Visualization tips for geoscientists: Matlab, part II

Introduction

In my previous post on this topic I left two loose ends: one in the main text about shading in 3D, and one in the comment section to follow-up on a couple of points in Evan’s feedback. I finally managed to go back and spend some time on those and that is what I am posting about today.

Part 1 – apply shading with transparency in 3D with the surf command

I was trying to write some code to apply the shading with transparency and the surf command. In fact, I’ve been trying, and asking around in the Matlab community for more than one year. But to no avail. I think it is not possible to create the shading directly that way. But I did find a workaround. The breakthrough came when I asked myself this question: can I find a way to capture in a variable the color and the shading associated with each pixel in one of the final 2D maps from the previous post? If I could do that, then it would be possible to assign the colors and shading in that variable using this syntax for the surf command:

surf(data,c);

where data is the gravity matrix and c is the color and shading matrix. To do it in practice I started from a suggestion by Walter Robertson on the Matlab community in his answer to my question on this topic.

The full code to do that is below here, followed by an explanation including 3 figures. As for the other post, since the data set I use is from my unpublished thesis in Geology, I am not able to share it, and you will have to use your own data, but the Matlab code is simply adapted.

%% cell 1
figure;
shadedpcolor(x,y,data,(1-normalise(slope)),[-5.9834 2.9969],[0 1],0.45,cube1,0);
axis equal; axis off; axis tight
shadedcolorbar([-5.9834 2.9969],0.55,cube1);

In cell 1 using again shadedpcolor.mnormalise.m, and cube1 color palette I create the 2D shaded image, which I show here in Figure 1.

Figure 1


Continue reading