What is acquisition footprint noise in seismic data?

Acquisition footprint is a noise field that appears on 3D seismic amplitude slices or horizons as an interwoven linear crosshatching parallel to the source line and receiver line directions. It is for the most part an expression of inadequate acquisition geometry, resulting in insufficient sampling of the seismic wave field (aliasing) and irregularities in the offset and azimuth distribution, particularly in the cross line direction.

Sometimes source-generated noise and incorrect processing (for example residual NMO due to erroneous velocity picks, incomplete migration, or other systematic errors) can accentuate the footprint.

This noise can interfere with the mapping of stratigraphic features and fault patterns, posing a challenge to seismic interpreters working in both exploration and development settings.

To demonstrate the relevance of the phenomenon I show below a gallery of examples from the literature of severe footprint in land data: an amplitude time slice (Figure 1a) and a vertical section (Figure 1b) from a Saudi Arabian case study, some seismic attributes (Figures 2, 3, 4, and 5), and also some modeled streamer data (Figure 6).

Bannagi combo

Figure 1. Amplitude time slice (top, time = 0.44 s) showing footprint in both inline and crossline direction, and amplitude section (bottom) highlighting the effect in the vertical direction. From Al-Bannagi et al. Copyrighted material.

Figure 2. Edge detection (Sobel filter) on the Penobscot 3D horizon (average time ~= 0.98 s) displaying N-S footprint. From Hall.

Figure 3. Edge detection (Sobel filter) on a shallow horizon (average time ~= 0.44 s)  from the F3 Netherlands 3D survey displaying E-W footprint.

Figure 4. Similarity attribute (top , time = 0.6 s), and most positive curvature (bottom, time = 1.3 s), both showing footprint. From Davogustto and Marfurt. Copyrighted material.

Figure 5. Amplitude time slice (top, time = 1.32 s) the corresponding  coherence section  (bottom) both showing footprint. From Chopra and Larsen. Copyrighted material.

Figure 6. Acquisition footprint in the form of low fold striation due to dip streamer acquisition. From Long et al. Copyrighted material.

In my next post I will review (with more examples form literature) some strategies available to either prevent or minimize the footprint with better acquisition parameters and modeling of the stack response; I will also discuss some ways the footprint can be attenuated after the acquisition of the data (with bin regularization/interpolation, dip-steered median filters, and kx ky filters, from simple low-pass to more sophisticated ones) when the above mentioned strategies are not available, due to time/cost constraint or because the interpreter is working with legacy data.

In subsequent posts I will illustrate a workflow to model synthetic acquisition footprint using Python, and how to automatically remove it in the Fourier domain with frequency filters, and then how to remove it from real data.

References

Al-Bannagi et al. 2005 – Acquisition footprint suppression via the truncated SVD technique: Case studies from Saudi Arabia: The Leading Edge, SEG, 24, 832– 834.

Chopra and Larsen,  2000 – Acquisition Footprint, Its Detection and Removal: CSEG Recorder, 25 (8).

Davogusto and Martfurt, 2011 – Footprint Suppression Applied to Legacy Seismic Data Volumes: 31st Annual GCSSEPM Foundation Bob F Perkins Research Conference 2011.

F3 Netherlands open access 3D:  info on SEG Wiki

Hall, 2014 –  Sobel filtering horizons (open source Jupyter Notebook on GitHub).

Long et al., 2004 – On the issue of strike or dip streamer shooting for 3D multi-streamer acquisition: Exploration Geophysics, 35(2), 105-110.

Penobscot open access 3D:  info on SEG Wiki

Computer vision in geoscience: recover seismic data from images, introduction

In a recent post titled Unweaving the rainbow, Matt Hall described our joint attempt (partly successful) to create a Python tool to enable recovery of digital data from any pseudo-colour scientific image (and a seismic section in particular, like the one in Figure 1), without any prior knowledge of the colormap.

Figure 1. Test image: a photo of a distorted seismic section on my wall.

Please check our GitHub repository for the code and slides and watch Matt’s talk (very insightful and very entertaining) from the 2017 Calgary Geoconvention below:

In the next two post, coming up shortly, I will describe in greater detail my contribution to the project, which focused on developing a computer vision pipeline to automatically detect  where the seismic section is located in the image, rectify any distortions that might be present, and remove all sorts of annotations and trivia around and inside the section. The full workflow is included below (with sections I-VI developed to date):

  • I – Image preparation, enhancement:
    1. Convert to gray scale
    2. Optional: smooth or blur to remove high frequency noise
    3. Enhance contrast
  • II – Find seismic section:
    1. Convert to binary with adaptive or other threshold method
    2. Find and retain only largest object in binary image
    3. Fill its holes
    4. Apply opening and dilation to remove minutiae (tick marks and labels)
  • III – Define rectification transformation
    1. Detect contour of largest object find in (2). This should be the seismic section.
    2. Approximate contour with polygon with enough tolerance to ensure it has 4 sides only
    3. Sort polygon corners using angle from centroid
    4. Define new rectangular image using length of largest long and largest short sides of initial contour
    5. Estimate and output transformation to warp polygon to rectangle
  • IV – Warp using transformation
  • V – Blanking annotations inside seismic section (if rectangular):
    1. Start with output of (4)
    2. Pre-process and apply canny filter
    3. Find contours in the canny filter smaller than input size
    4. Sort contours (by shape and angular relationships or diagonal lengths)
    5. Loop over contours:
      1. Approximate contour
      2. If approximation has 4 points AND the 4 semi-diagonals are of same length: fill contour and add to mask
  • VI – Use mask to remove text inside rectangle in the input and blank (NaN) the whole rectangle. 
  • VII – Optional: tools to remove arrows and circles/ellipses:
    1. For arrows – contours from (4) find ones with 7 sizes and low convexity (concave) or alternatively Harris corner and count 7 corners, or template matching
    2. For ellipses – template matching or regionprops
  • VIII – Optional FFT filters to remove timing lines and vertical lines

You can download from GitHub all the tools for the automated workflow (parts I-VI) in the module mycarta.py, as well as an example Jupyter Notebook showing how to run it.

The first post focuses on the image pre-processing and enhancement, and the detection of the seismic line (sections I and II, in green); the second one deals with the rectification of the seismic (sections IV to V, in blue). They are not meant as full tutorials, rather as a pictorial road map to (partial) success, but key Python code snippets will be included and discussed.

Mild or wild: robustness through morphological filtering

This guest post (first published here) is by Elwyn Galloway, author of Scibbatical on WordPress. It is the forth in our series of collaborative articles about sketch2model, a project from the 2015 Calgary Geoscience Hackathon organized by Agile Geoscience. Happy reading.

 

We’re highlighting a key issue that came up in our project, and describing what how we tackled it. Matteo’s post on Morphological Filtering does a great job of explaining what we implemented in sketch2model. I’ll build on his post to explain the why and how. In case you need a refresher on sketch2model, look back at sketch2model, Sketch Image Enhancement, Linking Edges with Geomorphological Filtering.

Morphological Filtering

As Matteo demonstrated by example, sketch2model’s ability to segment a sketch properly depends on the fidelity of a sketch.

An image of a whiteboard sketch (left) divides an area into three sections. Without morphological filtering, sketch2model segments the original image into two sections (identified as orange, purple) (centre). The algorithm correctly segments the area into three sections (orange, purple, green) when morphological filtering is applied (right).

To compensate for sketch imperfections, Matteo suggested morphological filtering on binarized images. Morphological filtering is a set of image modification tools which modify the shape of elements in an image. He suggested using the closing tool for our purposes. Have a look at Matteo’s Post for insight into this and other morphological filters.

One of the best aspects of this approach is that it is simple to apply. There is essentially one parameter to define: a structuring element. Since you’ve already read Matteo’s post, you recall his onion analogy explaining the morphological filtering processes of erosion and dilation – erosion is akin to removing an onion layer, dilation is adding a layer on. You’ll also recall that the size of the structuring element is the thickness of the layer added to, or removed from, the onion. Essentially, the parameterization of this process comes down to choosing the thickness of the onion layers.

Sketch2model uses dilation followed by erosion to fill gaps left between sketch lines (morphological dilation followed by erosion is closing). Matteo created this really great widget to illustrate closing using an interactive animation.

Matteo’s animation was created using this interactive Jupyter notebook. Closing connects the lines of the sketch.

Some is Good, More is Better?

Matteo showed that closing fails if the structural element used is too small. So just make it really big, right? Well, there can be too much of a good thing. Compare what happens when you use an appropriately sized structuring element (mild) to the results from an excessively large structuring element (wild).

Comparing the results of mild and wild structuring elements: if the structuring element is too large, the filter compromises the quality of the reproduction.

Using a morphological filter with a structural element that is too small doesn’t fix the sketches, but using a structural element that is too large compromises the sketch too. We’re left to find an element that’s just right. Since one of the priorities for sketch2model was to robustly handle a variety of sketches with as little user input as possible — marker on whiteboard, pencil on paper, ink on napkin — we were motivated to find a way to do this without requiring the user to select the size of the structuring element.

Is there a universal solution? Consider this: a sketch captured in two images, each with their own resolution. In one image, the lines of the sketch appear to be approximately 16 pixels wide. The same lines appear to be 32 pixels wide in the other image. Since the size of the structuring element is defined in terms of pixels, it becomes apparent the ideal structuring element cannot be “one size fits all”.

High-resolution (left) versus low-resolution (right) image of the same portion of a sketch. Closing the gap between the lines would require a different size structuring element for each image: about 5 pixels for high-resolution or 1 pixel for low-resolution.

Thinking Like a Human

Still motivated to avoid user parameterization for the structuring element, we explored ways to make the algorithm intelligent enough to select an appropriate structuring element on its own. Ultimately, we had to realize a few things before we came up with something that would work:

  1. When capturing an image of a sketch, users compose very similar images (compose in the photographic sense of the word): sketch is centered and nearly fills the captured image.
  2. The image of a sketch is not the same as a user’s perception of a sketch: a camera may record imperfections (gaps) in a sketch that a user does not perceive.
  3. The insignificance of camera resolution: a sketched feature in captured at two different resolutions would have two different lengths (in pixels), but identical lengths when defined as a percentage of image size.

With these insights, we deduced that the gaps we were trying to fill with morphological filtering would be those that escaped the notice of the sketch artist.

Recognizing the importance of accurate sketch reproduction, our solution applies the smallest structuring element possible that will still fill any unintentional gaps in a sketch. It does so in a way that is adaptable.

A discussion about the definition of “unintentional gap” allowed us to create a mandate for the closing portion of our algorithm. Sketch2model should fill gaps the user doesn’t notice. The detail below the limit of the user’s perception should not affect the output model. A quick “literature” (i.e. Google) search revealed that a person’s visual perception is affected by many factors beyond the eye’s optic limits. Without a simple formula to define a limit, we did what any hacker would do… define it empirically. Use a bunch of test images to tweak the structuring element of the closing filter to leave the perceptible gaps and fill in the imperceptible ones. In the sketch2model algorithm, the size of structuring element is defined as a fraction of the image size, so it was the fraction that we tuned empirically.

Producing Usable Results

Implicit in the implementation is sketch2model’s expectation that the user’s sketch, and their image of the sketch are crafted with some care. The expectations are reasonable: connect lines you’d like connected; get a clear image of your sketch. Like so much else in life, better input gives better results.

Input (left) and result (right) of sketch2model.

To produce an adaptable algorithm requiring as little user input as possible, the sketch2model team had to mix a little image processing wizardry with some non-technical insight.

Have you tried it? You can find it at sketch2model.com. Also on GitHub.


Previous posts in the sketch2model series: sketch2model, Sketch Image Enhancement, Linking Edges with Geomorphological Filtering.

Machine Learning in Geoscience with Scikit-learn. Part 2: inferential statistics and domain knowledge to select features for oil prediction

In the first post of this series I showed how to use Pandas, Seaborn, and Matplotlib to:

  • load a dataset
  • test, clean up, and summarize the data
  • start looking for relationships between variables using scatterplots and correlation coefficients

In this second post, I will expand on the latter point by introducing some tests and visualizations that will help highlight the possible criteria for choosing some variables, and dropping others. All in Python.

I will use a different dataset than that in the previous post. This one is from the paper “Many correlation coefficients, null hypotheses, and high value“(Lee Hunt, CSEG Recorder, December 2013).

The target to be predicted is oil production from a marine barrier sand. We have measured production (in tens of barrels per day) and 7 unknown (initially) predictors, at 21 wells.

Hang on tight, and read along, because it will be a wild ride!

I will show how to:

1) automatically flag linearly correlated predictors, so we can decide which might be dropped. In the example below (a matrix of pair-wise correlation coefficients between variables) we see that X2, and X7, the second and third best individual predictors of production (shown in the bottom row) are also highly correlated to X1, the best overall predictor.

2) automatically flag predictors that fail a critical r test

3) create a table to assess the probability that a certain correlation is spurious, in other words the probability of getting at least the correlation coefficient we got with our the sample, or even higher, purely by chance.

I will not recommend to run these tests and apply the criteria blindly. Rather, I will suggest how to use them to learn more about the data, and in conjunction with domain knowledge about the problem at hand (in this case oil production), make more informed choices about which variables should, and which should not be used.

And, of course, I will show how to make the prediction.

Have fun reading: get the Jupyter notebook on GitHub.

Python, Einstein, and the discovery of Gravitational Waves at PyCon Italia

Introduction

At 11:53 am of September 14 2015, Marco Drago, an Italian postdoctoral scientist at the Max Planck Institute for Gravitational Physics (AKA Albert Einstein Institute) in Hannover, Germany, was the first person to see it: the sophisticated instruments at the Laser Interferometer Gravitational-Wave Observatory (LIGO) had detected a very likely candidate signal from gravitational waves. The signal, caused by the collision and merger of two massive black holes, proved to be real; the discovery, announced to the public a few months later, demonstrated one of Albert Einstein’s predictions exactly 100 years after he formulated his general theory of relativity. How exciting!

I was aware that Python was used in both LIGO’s control room and for some of the scientific work and data analysis, through a Python LIGO thread on Reddit. Also, one of the main figures in the discovery paper was made entirely in Python, and used a Matplotlib perceptual colormap (Viridis, the new default in mpl 2.0).

It was not, however, until I decided to attend (virtually, on Youtube) this year’s PyCon Italia that I realized how big a role Python had played. In this post, I will briefly summarize what Franco Carbognani, keynote speaker for day 2 (Python and the dawn of gravitational-wave astronomy), and Tito dal Canton (Python’s role in the detection of gravitational waves) presented on the science and technology of gravitational waves detection, and on Python’s contributions.

The science

Most of us have studied that gravity produces a curvature in spacetime. A less generally known, but major prediction of general relativity is that a perturbation of spacetime produces gravitational waves, which are detected because they stretch and squeeze space producing a measurable strain; this however requires a violent cosmological phenomenon involving large masses, relativistic speeds (approaching the speed of light), and asymmetrical acceleration (an abrupt change in those speeds, such as in a collision).

One such event is that which generated the signal detected in September of last year. It occurred about 1300 million years ago when two large black holes spiralled towards one another and then merged into a single, stationary black hole, losing energy by way of radiating gravitational waves (ripples in space-time) exactly as predicted by Einstein; the whole process took only a few tenths of a second, but involved a total of 65 solar masses (36 + 29), 3 of which were converted, mostly in the final instant of the merger, to gravitational wave energy according to the famous relationship E = mc2. This was so much energy that, had it been  visible (electromagnetic), it would’ve been 50 times brighter than the entire universe.  Yet, even a huge event like that created very small waves (gravity is the weakest of the four fundamental interactions of nature), which merely displaced a pair of free-falling masses placed 3 km apart by a length 10,000 smaller than the diameter of a proton. Measuring this displacement requires very complex arrays of laser beams, mirrors, and detectors measuring interference (interferometers), such as the 2 LIGO in the United States, and VIRGO in Italy.

This video illustrates in detail how VIRGO (and LIGO) is able to detects the very weak  waves; it was produced by Marco Kraan of the National Institute for Subatomic Physics in Amsterdam, and shown during Carbognani’s talk:

The figure below shows an illustration of the event’s 3 main phases and the corresponding, matched signals from the 2 LIGO interferometers.

LIGO detects gravitational waves from merging black holes. Illustration credit: LIGO, NSF, Aurore Simonnet (Sonoma State University).

Python’s many contributions

Franco Carbognani is VIRGO integration manager with the European Gravitational Observatory in Pisa. The portion of his talk focusing on Python and VIRGO’s control systems starts here. He told the audience that where Python played a major role was in the building of a complete automation layer on top of real-time interferometer control, with analysis of data online and warning to the operator in case of anomalies, and also in GUI development and unification. Python was the obvious choice for these tasks because it is a compact, clear language, easy for beginners to learn, and yet allowing very complex programming (functional, object oriented, imperative, exceptions, etc.); its Numpy and Scipy libraries allow handling of the complex math required, without sacrificing speed (thanks to the optimized Fortran and C under the hood); a large collection of other libraries allows for almost any task to be carried out, including (as mentioned above) Matplotlib for publication quality graphs; finally, it is open-source, and many in the community already used it (commissioning, computing, and data analytics groups).

Tito dal Canton is a postdoctoral scientist at the Max Planck Institute in Hannover. The data analysis part of his talk starts here. The workflow he outlined, involving the use of several separate pipelines, consists of retrieving the data, deciding which data can be analyzed, decide if it contains a signal, estimate its statistical significance, and estimating the signal parameters (e.g. masses of stars, spin velocity, and distance) by comparison with a model. A lot of this work is run entirely in Python using either the GWpy and PyCBC packages. For the keener reader, one of the Jupyter Notebooks on the LIGO Python tutorials page, replicates some of the signal processing and data analysis shown during his talk.

Additional resources

MIT-Caltech video on Gravitational Waves detection.

sketch2model – sketch image enhancements

This is the second post of in a series of collaborative articles about sketch2model, a project from the 2015 Calgary Geoscience Hackathon organized by Agile Geoscience.

The first post was written by Elwyn Galloway and published on both his Scibbatical blog and here on MyCarta. In that article Elwyn mentioned the need for an adaptive image conditioning workflow for binarization of photos with geological sketches in images. Binarization is the process of converting a natural image to a binary image (check this simple but awesome interactive demonstration of binarization), which in our case is necessary to separate the sketch from the background.

The following is a demonstration of the preliminary image processing operations applied to the input photo when sketch2model is run. The full code listing of this demonstration is available as a Jupyter notebook on GitHub. Also in GitHub you can find a Jupyter Notebook with the fully documented version of sketch2model.

First we import one of the photos with sketches and convert it to a grayscale image.

im = io.imread('paper_breaks.png')
im = color.rgb2gray(im[0:-1:2,0:-1:2])

Next we enhance the grayscale image with a couple of cascaded processes. But before we do that, let’s graph the intensity values across the image to understand the degree of contrast between sketch edges and background, which ultimately will determine our success in separating them from it. We show this in the figure below, on the left, for one column of pixels (y direction). The black line across the input image on the right shows the location of the column selected. It is fairly obvious from the plot on the left that the intensity of the background is not uniform, due to variable light conditions when the photo was taken, and towards the right (e.g. bottom of the photo) it gets closer to that of the edges. In some images it might even become less than the intensity of the edge. This highlights the need for (preemptively) applying the enhancements illustrated in the remainder of the post.

The first enhancement is called compressor, or limiter. I read many years ago that it is used in electronics to find hard edges in data: the idea is to square each element in the data (image, or other type of data), smooth the result (enough to remove high frequency variations but not so much as to eliminate variability), take the square root, and finally divide each element in the input by the square root result.

I experimented with this method (at the time using Matlab and its Image Processing Toolbox) using the same gravity dataset from my 2015 geophysical tutorial on The Leading Edge (see the post Mapping and validating geophysical lineaments with Python). An example of one such experiments is shown in the figure below where: the top left map is the Bouguer data; the centre top map is the squared data; the top right is the result of a Gaussian blur; the bottom left the result of square root, and centre right is the final output, where the hardest edges in the original data have been enhanced.

The most important parameter in this process is the choice of the smoothing or blur; using a Gaussian kernel of different size more subtle edges are enhanced, as seen in the bottom right map (these are perhaps acquisition-related gridding artifacts).

In our sketch2model implementation the size of the Gaussian kernel is hardcoded; it was chosen following trial and error on multiple photos of sketches and yielded optimal results in the greatest majority of them. We were planning to have the kernel size depend on the size of the input image, but left the implementation to our ‘future work’ list.’

Here’s the compressor code from sketch2model:

# compressor or limiter (electronics): find hard edges in data with long 
# wavelength variations in amplitude
# step 1: square each element in the image to obtain the power function
sqr = im**2
# step 2: gaussian of squared image
flt2 = sp.ndimage.filters.gaussian_filter(sqr,21)
# step 3: divide the intensity of each original pixel by the square root 
# of the smoothed square
cmprs= im/(np.sqrt(flt2))

and a plot of the result (same column of pixels as in the previous one):

From the plot above we see that now the background intensity is uniform and the contrast has been improved. We can maximize it with contrast stretching, as below:

# contrast stretching
p2, p98 = np.percentile(cmprs, (2, 98))
rescale = exposure.rescale_intensity(cmprs, in_range=(p2, p98))

We now have ideal contrast between edges and background, and can get a binary image with the desired sketch edges using a scalar threshold:

# binarize image with scalar threshold
binary = ~(color.rgb2gray(rescale) > 0.5)

Bingo!

New Horizons truecolor Pluto recolored in Viridis and Inferno

Oh, the new, perceptual MatplotLib colormaps…..

Here’s one stunning, recent Truecolor image of Pluto from the New Horizons mission:

Original image: The Rich Color Variations of Pluto. Credit: NASA/JHUAPL/SwRI. Click on the image to view the full feature on New Horizon’s site

Below, I recolored using two of the new colormaps:

Recolored images: I like Viridis, by it is Inferno that really brings to life this image, because of its wider hue and lightness range!

 

NASA’s beautiful ‘Planet On Fire’ images and video

Credits: NASA’s Goddard Space Flight Center and NASA Center for Climate Simulation.

 

Click on the image to watch the original video on NASA’s Visualization Explorer site.

Read the full story on NASA’s Visualization Explorer site.