Simulating seismic surveys using King Tut’s CAT scan

The remote sensing used to study the human body is very similar to the remote sensing used to study the subsurface. Apart from a scaling factor (due to the different frequencies of the signals used) the only major difference between the two methods of investigation is in that radiologists and doctors looking at an x-ray, ultrasound, or CAT scan image know what to look for in those images, as bones, tissues, and anomalies, have known characteristics, whereas the subsurface is always to a large extent unknown.

In this short visual post I am going to use a CAT scan of King Tut’s skull to explore the effect on the image quality of progressive decimation of the data followed by upsampling it back to the initial size. I will also look at the effect of these manipulations on the results of edge detection.

With this I want to simulate the progressive reduction in imaging quality that happens when going from high density 3D seismic acquisition to medium density 3D seismic to high quality, but sparse 2D seismic lines.

Here’s the input image in Figure 1.


Figure 1. CAT scan of King Tut’s skull – Supreme Council of Antiquities.


In Figure 2 I am showing the image after import into a Jupiter Notebook and conversion to grayscale, and the result of edge detection using the Sobel filter. Notice the excellent quality of the edge detection result.


Figure 2. Original image, or ground truth for the experiment,  and edge detection result.

To simulate a high-resolution 3D seismic acquisition I decimated the original image by a factor of 4 in both directions. The resulting image (no interpolation) is, shown in Figure 3, is of good quality, and so is the edge detection result.


Figure 3. Simulated high-resolution 3D survey and edge detection result.

The image in Figure 4 results from a further decimation by a factor of 2 of the image in Figure 3, then interpolation to upsample to the same size as the image in Figure 4. The image and the edge detection are still of fair quality overall, but some of the smaller features have either disappeared, merged, or faded.

Figure 4. Simulated medium resolution 3D survey and edge detection result.

Figure 4. Simulated medium resolution 3D survey and edge detection result.

Now look at Figure 5: this is the equivalent of a high quality (in one direction) 2D dataset. Although we can still guess at what this represents, I would argue this is a result of our a priori knowledge of what it is supposed to represent – a human skull; and yet I don’t think anybody would want their doctor to make a diagnosis  based on this image.

Figure 5. Simulated set of very high-resolution 2D lines.

Figure 5. Simulated set of very high-resolution 2D lines.

The image in Figure 6 results from 2D interpolation (my intention is to simulate the result we would get by gridding 2D data to get a continuous image. We can now definitely interpret this as a skull, but the edge detection result is very unsatisfactory.

Figure 6. Simulated interpolation of 2D lines.

Figure 6. Simulated interpolation of 2D lines.

In  future post we will explore the effects of adding periodic noise (similar to seismic acquisition footprint) on these images and on the edge detection results. I will also show you how to remove it using 2D FFT filters, as promised (now more than a year ago) in my post Moiré Patterns.

If you would like to play with the code, get the Jupiter Notebook here.

Mapping and validating geophysical lineaments with Python

In Visualization tips for geoscientists: MATLAB, Part III I showed there’s a qualitative correlation between occurrences of antimony mineralization in the southern Tuscany mining district and the distance from lineaments derived from the total horizontal derivative (also called maximum horizontal gradient).

Let’s take a look at the it below (distance from lineaments increases as the color goes from blue to green, yellow, and then red).


However, in a different map in the same post I showed that lineaments derived using the maxima of the hyperbolic tilt angle (Cooper and Cowan, 2006, Enhancing potential field data using filters based on the local phase) are offset systematically from those derived using the total horizontal derivative.

Let’s take a look at the it below: in this case Bouguer gravity values increase as the color goes from blue to green, yellow, and then red; white polygons are basement outcrops.

The lineaments from the total horizontal derivative are in black, those from the maxima of hyperbolic tilt angle are in gray. Which lineaments should be used?

The ideal way to map the location of density contrast edges (as a proxy for geological contacts) would be  to gravity forward models, or even 3D gravity inversion, ideally constrained by all available independent data sources (magnetic or induced-polarization profiles, exploratory drilling data, reflection seismic interpretations, and so on).

The next best approach is to map edges using a number of independent gravity data enhancements, and then only use those that collocate.

Cooper and Cowan (same 2006 paper) demonstrate that no single-edge detector method is a perfect geologic-contact mapper. Citing Pilkington and Keating (2004, Contact mapping from gridded magnetic data – A comparison of techniques) they conclude that the best approach is to use “collocated solutions from different methods providing increased confidence in the reliability of a given contact location”.

I show an example of such a workflow in the image below. In the first column from the left is a map of the residual Bouguer gravity from a smaller area of interest in the southern Tuscany mining district (where measurements were made on a denser station grid). In the second column from the left are the lineaments extracted using three different (and independent) derivative-based data enhancements followed by skeletonization. The same lineaments are superimposed on the original data in the third column from the left. Finally, in the last column, the lineaments are combined into a single collocation map to increase confidence in the edge locations (I applied a mask so as to display edges only where at least two methods collocate).


If you want to learn more about this method, please read my note in the Geophysical tutorial column of The Leading Edge, which is available with open access here.
To run the open source Python code, download the iPython/Jupyter Notebook from GitHub.

With this notebook you will be able to:

1) create a full suite of derivative-based enhanced gravity maps;

2) extract and refine lineaments to map edges;

3) create a collocation map.

These technique can be easily adapted to collocate lineaments derived from seismic data, with which the same derivative-based enhancements are showing promising results (Russell and Ribordy, 2014, New edge detection methods for seismic interpretation.)