### Featured

October 22, 2020

In my last post I touched on the topic of continuously improving your geo-computing projects (also take a look at my chapter from the upcoming Software Underground book, 52 things you should know about geocomputing).

However, one aspect that I intentionally left out in was that of coding skills as I was planning to get back to it with a dedicated post, which you are reading just now.

#### 2018 vs 2020 comparison of flag percentage calculation

In the Jupyter notebook I compare the results of seismic inversion from two methods (with or without inversion-tailored noise attenuation) using a custom function to flag poor prediction of the target well log using median/median absolute deviation as a statistic for the error; the results are shown below.

One may just do this visual comparison, but I also included calculations to count the number and percentage of samples that have been flagged for each case. Below is a cell of code from the Jupyter notebook (let’s call it 2020 code) that does just that .

zone_errors_a['flagged samples']=result_a.groupby('zone', sort=False).flag.sum().valueszone_errors_b['flagged samples']=result_b.groupby('zone', sort=False).flag.sum().valuesdef calc_proportion(dtf):    """    function to calculate proportion of flagged samples    """    x=dtf.flag    return round(100 * x.sum()/len(x), 1)zone_errors_a['proportion (%)']=result_a.groupby('zone',sort=False).apply(calc_proportion).valueszone_errors_b['proportion (%)']=result_b.groupby('zone',sort=False).apply(calc_proportion).values

I am a lot happier with this code than with the original code (circa 2018), which is in the cell below.

zones_a=list(result_a['zone'].unique())
zones_b=list(result_b['zone'].unique())

zone_errors_a['flagged samples']=[result_a.loc[result_a.zone==z,'flag'].sum() for z in zones_a]
zone_errors_b['flagged samples']=[result_b.loc[result_b.zone==z,'flag'].sum() for z in zones_b]

zone_errors_a['proportion (%)']=[round(result_a.loc[result_a.zone==z,  'flag'].sum()/len(result_a.loc[result_a.zone==z,'flag'])*100,1) for z in zones_a]

zone_errors_b['proportion (%)']=[round(result_b.loc[result_b.zone==z,  'flag'].sum()/len(result_b.loc[result_b.zone==z,'flag'])*100,1) for z in zones_b]                                    

The major differences in the older code are:

• I was using unique instead of Pandas’ groupby
• I was using list comprehensions to work through the DataFrame, instead of Pandas’ apply and a custom function to calculate the percentages on the entire DataFrame at once.

I find the 2020 code much more tidy and easier to read.

#### Enters Pandas for everyone

The above changes happened in but a few hours over two evenings, after having worked through chapters 9 and 10 of Pandas for Everyone by Daniel Chen, a very accessible read for all aspiring data scientists, which I highly recommend (also, watch Daniel’s fully-packed 2019 Pycon tutorial).

And before you ask: no, you do not get the Agile Scientific sticker with the book, I am sorry.

š

#### Comparison of 2016 vs 2020 code snippets from the 2016 SEG Machine Learning contest

A second example is of code used to calculate the first and second derivatives for all geophysical logs from the wells in the 2016 SEG Machine Learning contest.

The two cells of code below do exactly the same thing: loop through the wells and for each one in turn loop through the logs, calculate the derivatives, add them to a temporary Pandas DataFrame, then concatenate into a single output DataFrame. In this case, the only difference is the moving away from unique to groupby.

I use the %%timeit cell magic to compare the runtimes for the two cells.

###### 2016 code
%%timeit
# for training data
# calculate all 1st and 2nd derivative for all logs, for all wells
train_deriv_df = pd.DataFrame()             # final dataframe

for well in train_data['Well Name'].unique():        # for each well
new_df = pd.DataFrame() # make a new temporary dataframe

for log in ['GR', 'ILD_log10', 'DeltaPHI', 'PHIND' ,'PE']: # for each log
# calculate and write to temporary dataframe
new_df[str(log) + '_d1'] = np.array(np.gradient(train_feat_df[log][train_feat_df['Well Name'] == well]))

# append all rows of temporary dataframe to final dataframe
train_deriv_df = pd.concat([train_deriv_df, new_df])

86 ms Ā± 1.47 ms per loop (mean Ā± std. dev. of 7 runs, 10 loops each)
###### 2020 code
%%timeit
# for training data
# calculate all 1st and 2nd derivative for all logs, for all wells
train_deriv_df = pd.DataFrame() # final dataframe

for _, data in train_feat_df.groupby('Well Name'): # for each well
new_df = pd.DataFrame()                        # make a new temporary dataframe

for log in ['GR', 'ILD_log10', 'DeltaPHI', 'PHIND' ,'PE']: # for each log
# calculate and write to temporary dataframe

# append all rows of temporary dataframe to final dataframe
train_deriv_df = pd.concat([train_deriv_df, new_df])

52.3 ms Ā± 353 Āµs per loop (mean Ā± std. dev. of 7 runs, 10 loops each)

We go down to 52.3 ms from 86 ms, which is a modest improvement, but certainly the code is more compact and a whole lot lighter to read (i.e. more pythonic, or pandaish if you prefer): I am happy!

As an aside, if you want to know more about timing code execution, see section 1.07 from Jake VanderPlas’ outstanding Python Data Science Handbook, which I also cannot recommend enough (and do yourself a favor: watch his series Reproducible Data Analysis in Jupyter).

By the way, below I show the notebook code comparison generated using the nbdiff-web option from the awesome nbdime library, a recent discovery.

# Upscaling geophysical logs with Python using Pandas and Bruges

With a few hours of work last weekend, I finished putting together a Jupyter notebook tutorial, started at the Geophysics Python sprint 2018, demonstrating how to:

• Use Agile Scientific’sĀ Welly to load two wells with several geophysical logs
• UseĀ Pandas,Ā Welly, and NumPyĀ to: remove all logs except for compressional wave velocity (Vp), shear wave velocity (Vs), and density (RHOB); store the wells in individual DataFrames; make the sampling rate common to both wells; check for null values; convert units from imperial to metric; convert slowness to velocity; add a well name column
• Split the DataFrame by well using unique values in the well name column
• For each group/well use Agile Scientific’sĀ BrugesĀ ‘s BackusĀ average to upscale all curves individually
• Add the upscaled curves back to the DataFrame

Matt Hall, (organizer), told me during a breakfast chat on the first day of the sprint that this tutorial would be a very good to have since it is one of the most requested examples by neophyte users of the Bruges library; I was happy to oblige.

The code for the most important bit, the last two items in the above list, is included below:

# Define parameters for the Backus filter
lb = 40   # Backus length in meters
dz = 1.0  # Log sampling interval in meters

# Do the upscaling work
wells_bk = pd.DataFrame()
grouped = wells['well'].unique()
for well in grouped:
new_df = pd.DataFrame()
Vp = np.array(wells.loc[wells['well'] == well, 'Vp'])
Vs = np.array(wells.loc[wells['well'] == well, 'Vs'])
rhob = np.array(wells.loc[wells['well'] == well, 'RHOB'])
Vp_bks, Vs_bks, rhob_bks = br.rockphysics.backus(Vp, Vs, rhob, lb, dz)
new_df['Vp_bk'] = Vp_bks
new_df['Vs_bk'] = Vs_bks
new_df['rhob_bk'] = rhob_bks
wells_bk = pd.concat([wells_bk, new_df])

# Add to the input DataFrame
wells_final = (np.concatenate((wells.values, wells_bk.values), axis=1))
cols = list(wells) + list(wells_bk)
wells_final_df = pd.DataFrame(wells_final, columns=cols)


And here is a plot comparing the raw and upscaled Vp and Vs logs for one of the wells:

Please check theĀ notebookĀ if you want to try the full example.

# Geophysics Python sprint 2018 – day 2 and beyond, part II

In the last post I wrote about what Volodymyr and I worked on during a good portion of day two of the sprint in October, and continued to work on upon our return to Calgary.

In addition to that I also continued to work on a notebook example, started in day one, demonstrating on how to upscale sonic and density logs from more than one log at a time using BrugesĀ ‘ backusand Panda’s groupby. This will be the focus of a future post.

The final thing I did was to write, and test an error_flag function for Bruges. The function calculates the difference between a predicted and a real curve; it flags errors in prediction if the difference between the curves exceeds a user-defined distance (in standard deviation units) from the mean difference. Another option available is to check whether the curves have opposite slopes (for example one increasing, the other decreasing within a specific interval). The result is a binary error log that can then be used to generate QC plots, to evaluate the performance of the prediction processes in a more (it is my hope) insightful way.

The inspiration for this stems from a discussion over coffee I had 5 or 6 years ago with Glenn Larson, a Geophysicist at Devon Energy, about the limitations of (and alternatives to) using a single global score when evaluating the result of seismic inversion against wireline well logs (the ground truth). I’d been holding that in the back of my mind for years, then finally got to it last Fall.

Summary statistics can also be calculated by stratigraphic unit, as demonstrated in the accompanying Jupyter Notebook.

# Geophysics Python sprint 2018 – day 2 and beyond, part I

In my last post I wrote about what I did on day one of the Geophysics sprint run by Agile Scientific in Santa Ana two weeks ago.

This post and the next one are about the project Volodymyr and I worked on during day two of the sprint, and continued to work on upon our return to Calgary.

We had read a great notebook byĀ Alessandro Amato del Monte (I recommend browsing his Geophysical notes repo) showing how to reconstruct a velocity log from density with optimized alpha and beta parameters for the Inverse Gardner function,Ā found via scipy.curve_fit.

Inspired by that, we set out with a dual goal:

• First, we wanted to adapt Alessandro’s optimization idea so that it would work withĀ Bruges‘ Inverse Gardner
• Second, we wanted to adapt a function from some old work of mineĀ to flag sections of the output velocity log with poor prediction; this would be useful to learn whereĀ alpha and beta may need to be tweaked because of changes in the rock lithology or fluid content

I’ll walk you through some of our work. Below are the two functions:

# Alessandro's simple inverse Gardner
def inv_gardner(rho, alpha, beta):
return (rho/alpha)**(1/beta)

# Bruges' inverse Gardner
def inverse_gardner(rho, alpha=310, beta=0.25, fps=False):
"""
Computes Gardner's density prediction from P-wave velocity.
Args:
rho (ndarray): Density in kg/m^3.
alpha (float): The factor, 310 for m/s and 230 for fps.
beta (float): The exponent, usually 0.25.
fps (bool): Set to true for FPS and the equation will use the typical
value for alpha. Overrides value for alpha, so if you want to use
your own alpha, regardless of units, set this to False.
Returns:
ndarray: Vp estimate in m/s.
"""
alpha = 230 if fps else alpha
exponent = 1 / beta
factor = 1 / alpha**exponent
return factor * rho**exponent

They look similarly structured, and take the same arguments. We can test them by passing a single density value and alpha/beta pair.

inv_gardner(2000, 0.39, 0.23)
>>> 1.349846231542594e+16

inverse_gardner(2000, 0.39, 0.23)
>>> 1.3498462315425942e+16

Good. So the next logical step would be to define some model density and velocity data (shamelessly taken from Alessandro’s notebook, except we now use Bruges’ Gardner with S.I. units) and pass the data, and Bruges’ inverse Gardner toscipy.curve_fitĀ to see if it does just work; could it be that simple?

# Make up random velocity and density with Bruges' direct Gardner
vp_test = numpy.linspace(1500, 5500)
rho_test = gardner(vp_test, 310, 0.25)
noise = numpy.random.uniform(0.1, 0.3, vp_test.shape)*1000
rho_test = rho_test + noise

The next block is only slightly different from Alessandro’sĀ notebook. Instead of using all data, we splits both density and velocity into two pairs of arrays: a rho12 and vp2 to optimize foralpha and beta,Ā  a rho1 for calculating “unknown” velocities vp_calc1 further down; the last one,Ā v1, will be used just to show where the real data might have been had we not had to calculate it.

idx = np.arange(len(vp_test))
np.random.seed(3)
spl1 = np.random.randint(0, len(vp_test), 15)
spl2 = np.setxor1d(idx,spl1)
rho1 = rho_test[spl1]
rho2 = rho_test[spl2]
vp1= vp_test[spl1] # this we pretend we do not have
vp2= vp_test[spl2]

Now, as in Alessandro’sĀ notebook, we pass simple inverse Gardner function to scipy.curve_fit to find optimal alpha and beta parameters, and we printalpha and beta.

popt_synt2, pcov2 = scipy.curve_fit(inv_gardner,rho2, vp2)
print (popt_synt2)
>>> [3.31376056e+02 2.51257203e-01]

Those values seem reasonable, but just to be sure let’s calculate vp_calc1Ā fromĀ rho1 and plot everything to be sure.

vp_calc1 = inv_gardner(rho1, *popt_synt2)

# this is to show the fit line
rho_synt_fit=np.linspace(1, 3000, 50)
vp_synt_fit=inv_gardner(rho_synt_fit, *popt_synt2)

plt.figure(figsize=(10, 10))
plt.plot(rho2,vp2,'or', markersize = 10, label = "fitted points")
plt.plot(rho1,vp1,'ob', markersize = 10, alpha = 0.4, label = "calculated points")
plt.plot(rho1,vp1,'ok', markersize = 10, label = "withheld points")
plt.plot(rho_synt_fit, vp_synt_fit, '-r', lw=2,
label='Fit' r'$V_p=(%.2f / \rho)^{1/%.2f}$' %(popt_synt2[0],
popt_synt2[1]))
plt.xlabel('Density rho [kg/m^3]'), plt.xlim(1800, 3000)
plt.ylabel('Velocty Vp [m/s]'), plt.ylim(1000, 6000)
plt.grid()
plt.legend(loc='upper left')
plt.show()

That looks great. Let’s now try the same using Bruges’ Inverse Gardner.

popt_synt2, pcov2 = curve_fit(inverse_gardner, rho2, vp2)
print (popt_synt2)
>>> [1.         0.29525991 1.        ]

That is odd, we do not get the same parameters; additionally, there’s this error message:

../scipy/optimize/minpack.py:794:
OptimizeWarning: Covariance of the parameters could not be estimated
category=OptimizeWarning)

One possible explanation is that although both inv_gardnerĀ and inverse_gardnerĀ take three parameters, perhaps scipy.curve_fitĀ does not know to expect it because in the latterĀ alpha and betaare pre-assigned.

The workaround for this was to write a wrapper function to ‘map’ between the call signature ofĀ scipy.curve_fitĀ and that of inverse_gardnerĀ so that it would be ‘communicated’ to the former explicitly.

def optimize_inverse_gardner(rho, alpha, beta):
return inverse_gardner(rho, alpha=alpha, beta=beta)

popt_synt2, pcov2 = scipy.curve_fit(optimize_inverse_gardner,
rho2, vp2)
print (popt_synt2)
>>> [3.31376060e+02 2.51257202e-01]

Which is the result we wanted.

In the next post we will apply this to some real data and show how to flag areas of poorer results.

# Geophysics Python sprint 2018 – day 1

Last weekend I went to California to attend my first ever Python sprint, which was organized atĀ MAZ CafĆ© con lecheĀ (Santa Ana) by Agile Scientific.

For me this event was a success in many respects. First of all, I wanted to spend some dedicated time working on an open source project, rather than chipping away at it once in a while. Also, participating in a project that was not my own seemed like a good way to challenge myself, by pushing me out of a zone of comfort. Finally, this was an opportunity to engage with other members of the Software Underground Slack team, some of which (for example Jesper Dramsch andĀ Brendon Hall) I’ve known for some time but actually never met in person.

Please read about the Sprint in general on Matt Hall‘s blog post,Ā CafĆ© con leche.Ā My post is a short summary of what I did on the first day.

After a tasty breakfast, and at least a good hour of socializing, I sat at a table with three other people interested in working on BrugesĀ (Agile’sĀ Python library for Geophysics) : Jesper Dramsch,Ā Adriana Gordon and Volodymyr Vragov.

As I tweeted that evening, we had a light-hearted start, but then we set to work.

While Adriana and Jesper tackled Bruges’ documentation, which was sorely needed, Volodymyr spent some hours on example notebooks fromĀ in-Bruges (a tour of Bruges), which needed fixing, and also on setting up our joint project for day 2 (more in the next post). For my part,Ā IĀ  put together a tutorial notebooks on how to use Bruges’ functions on wireline logs stored in a Pandas DataFrame. According to Matt, this is requested quite often, so it seemed like a good choice.

Let’s say that a number of wells are stored in a DataFrame with both a depth column, and a well name column, in addition to log curves.

The logic for operating on logs individually is this:
Split the wells in the DataFrame using groupby, then
for each well
for each of the logs of interest
do something using one of Bruges’ functions (for example apply a rolling mean)

The code to do that is surprisingly simple, once you’ve figure it out (I myself struggle often, and not little with Pandas at the outset of new projects).

One has to first create a list with the logs of interest, like so:

logs = ['GR', 'RHOB']

then define the length of the window for the rolling operation:

window = 9

finally, the logic above is applied as:

wells_sm=pd.DataFrame()

grouped=wells['well'].unique()

for well in grouped:
new_df=pd.DataFrame()
sm=br.filters.mean(np.array(wells[log][wells['well']==well]),
window)
new_df[str(log) + '_sm']=sm
wells_sm=pd.concat([wells_sm, new_df])


where wells_sm is a temporary DataFrame for the filtered logs, which can be added back to the original DataFrame with:

wells_filtered = (np.concatenate((wells.values,
wells_sm.values), axis=1))
cols = list(wells) + list(wells_sm)
wells_filtered_df = pd.DataFrame(wells_filtered, columns=cols)

You can work through the full example in the notebook.

# Machine Learning in Geoscience with Scikit-learn. Part 2: inferential statistics and domain knowledge to select features for oil prediction

In theĀ first postĀ of this seriesĀ I showed how to use Pandas, Seaborn, and Matplotlib to:

• test, clean up, and summarize the data
• start looking for relationships between variables using scatterplots and correlation coefficients

In this second post, I will expand on the latter point by introducing some tests and visualizations that will help highlight the possible criteria for choosing some variables, and dropping others. All in Python.

I will use a different dataset than that in the previous post. This one is from the paperĀ “Many correlation coefficients, null hypotheses, and high value“(Lee Hunt, CSEG Recorder, December 2013).

The target to be predicted is oil production from a marine barrier sand. We have measured production (in tens of barrels per day) and 7 unknown (initially) predictors, at 21 wells.

Hang on tight, and read along, because it will be a wild ride!

I will show how to:

1) automatically flag linearly correlated predictors, so we can decide which might be dropped. In the example below (a matrix of pair-wise correlation coefficients between variables) we see that X2, and X7, the second and third best individual predictors of production (shown in the bottom row) are also highly correlated to X1, the best overall predictor.

2) automatically flag predictors that fail a critical r test

3) create a table to assess the probability that a certain correlation is spurious, in other words the probability of getting at least the correlation coefficient we got with our the sample, or even higher, purely by chance.

I will not recommend to run these tests and apply the criteria blindly. Rather, I will suggest how to use them to learn more about the data, and in conjunction with domain knowledge about the problem at hand (in this case oil production), make more informed choices about which variables should, and which should not be used.

And, of course, I will show how to make the prediction.

Have fun reading: get the JupyterĀ notebook on GitHub.

# Machine learning in geoscience with scikit-learn. Part 1: checking, tidying, and analyzing the dataset

The idea behind this series of articles is to show how to predict P-wave velocity, as measured by a geophysical well log (the sonic), from a suite of other logs: density, gamma ray, and neutron, and also depth, using Machine Learning.

The log suite is from the same well that Alessandro Amato del Monte used in the Seismic Petrophysics Notebook accompanying his Geophysical tutorial article on The Leading Edge.

I will explore different Machine Learning methods from the scikit-learn Python library and compare their performances.

To wet your appetites, here’s an example of P-wave velocity, Vp, predicted using a cross-validated linear model, which will be the benchmark for the performance of other models, such as SVM and Random Forest:

In the first notebook, which is already available on GitHub here, I show how to use the Pandas and Seaborn Python libraries to import the data, check it, clean it up, and visualize to explore relationships between the variables. For example, shown below is a heatmap with the pairwise Spearman correlation coefficient between the variables (logs):

Stay tuned for the next post / notebook!

PS: I am very excited by the kick-off of the Geophysical Tutorial (The Leading Edge) Machine Learning Contest 2016. Check it out here!