Busting bad colormaps with Python and Panel

I have not done much work with, or written here on the blog about colormaps and perception in quite some time.

Last spring, however, I decided to build a web-based app to show the effects of using a bad colormaps. This stemmed from two needs: first, to further my understanding of Panel, after working through the awesome tutorial by James Bednar, Panel: Dashboards (at PyData Austin 2019); and second, to enable people to explore interactively the effects of bad colormaps on their perception, and consequently the ability to on interpret faults on a 3D seismic horizon.

I introduced the app at the Transform 2020 virtual subsurface conference, organized by Software Underground last June. Please watch the recording of my lightning talk as it explains in detail the machinery behind it.

I am writing this post in part to discuss some changes to the app. Here’s how it looks right now:

The most notable change is the switch from one drop-down selector to two-drop-down selectors, in order to support both the Matplotlib collection and the Colorcet collection of colormaps. Additionally, the app has since been featured in the resource list on the Awesome Panel site, an achievement I am really proud of.

awesome_panel

You can try the app yourself by either running the notebook interactively with Binder, by clicking on the button below:
Binder

or, by copying and pasting this address into your browser:

https://mybinder.org/v2/gh/mycarta/Colormap-distorsions-Panel-app/master?urlpath=%2Fpanel%2FDemonstrate_colormap_distortions_interactive_Panel

Let’s look at a couple of examples of insights I gained from using the app. For those that jumped straight to this example, the top row shows:

  • the horizon, plotted using the benchmark grayscale colormap, on the left
  • the horizon intensity, derived using skimage.color.rgb2gray, in the middle
  • the Sobel edges detected on the intensity, on the right

and the bottom row,  shows:

  • the horizon, plotted using the Matplotlib gist_rainbow colormap, on the left
  • the intensity of the colormapped, in the middle. This is possible thanks to a function that makes a figure (but does not display it), plots the horizon with the specified colormap, then saves plot in the canvas to an RGB numpy array
  • the Sobel edges detected on the colormapped intensity, on the right

I think the effects of this colormaps are already apparent when comparing the bottom left plot to the top left plot. However, simulating perception can be quite revealing for those that have not considered these effects before. The intensity in the bottom middle plot is very washed out in the areas corresponding to green color in the bottom left, and as a result, many of the faults are not visible any more, or only with much difficulty, which is demonstrated by the Sobel edges in the bottom right.

And if you are not quite convinced yet, I have created these hill-shaded maps, using Matt Hall”s delightful function from this notebook (and check his blog post):

Below is another example, using the Colocrcet cet_rainbow which is is one of Peter Kovesi’s perceptually uniform colormaps.  I use many of Peter’s colormaps, but never used this one, because I use my own perceptual rainbow, which does not have  a fully saturated yellow, or a fully saturated red. I think the app demonstrate, that even though they are more subtle , this rainbow still is introducing some artifacts. The yellow colour creates narrow flat bands, visible in the intensity and Sobel plots, and indicated by yellow arrows; the red colour is also bad as usual, causing an artificial decrease in intensity(magenta arrows).

Working with 3D seismic data in Python using segyio and numpy (mostly)

Between 2 and 3 years ago I started turning my long time passion for image processing, and particularly morphological image processing, to the task of fault segmentation.

At the time I shared my preliminary code, of which I was very happy, in a Jupyter notebook, which you can run interactively at this GitHub repository.

Two areas need improvement to get that initial workflow closer to a production one. The first one is on the image processing and morphology side; I am thinking of including: a better way to clean-up very short faults; pruning to eliminate spurious segments in the skeletonization result; the von Mises distribution instead of standard distribution to filter low dip angles. I know how to improve all those aspects, and have some code snippets sitting around in various locations on my Mac, but I am not quite ready to push for it.

The second area, on the seismic side, is ability to work with 3D data. This has been a sore spot for some time.

Enter segyio, a fast, open-source library, developed precisely to work with SEGY files. To be fair, segyio has been around for some time, as I very well know from being a member of the Software Underground community (swung), but it was only a month or so ago that I started tinkering with it.

This post is mostly to share back with the community what I’ve learned in my very first playground session (with some very helpful tips from Jørgen Kvalsvik, a fellow member of swung, and one of the creators of segyio), which allowed me to create a 3D fault segmentation volume (and have lots of fun in the process) from a similarity (or discontinuity) volume.

The workflow, which you can run interactively at this segyio-notebooks GitHub repository (look for the 01 – Basic tutorial) is summarized pictorially in Figure 1, and comprises the steps below:

  • use segy-io to import two seismic volumes in SEGY file format from the F3 dataset, offshore Netherlands, licensed CC-BY-SA: a similarity volume, and an amplitude volume (with dip steered median filter smoothing applied)
  • manipulate the similarity to create a discontinuity/fault volume
  • create a fault mask and display a couple of amplitude time slices with superimposed faults
  • write the fault volume to SEGY file using segy-io, re-using the headers from the input file
workflow

Figure 1. Naive 3D seismic fault segmentation workflow in Python.

 

Get the notebooks on GitHub (look for the 01 – Basic tutorial)

Feedback is welcome.

 

DISCLAIMER: The steps outlined in the tutorial are not intended as a production-quality fault segmentation workflow. They work reasonably well on the small, clean similarity volume, artfully selected for the occasion, but it is just a simple example.

Using Python to calculate northern hemisphere’s surface land coverage

Yesterday during my lunch break I was rather bored; it is unseasonably cold for the fall, even in Calgary, and a bit foggy too.
For something to do I browsed the Earth Science beta on Stack Exchange looking for interesting questions (as an aside, I encourage readers to look at the unanswered questions).
There was one that piqued my curiosity, “In the northern hemisphere only, what percentage of the surface is land?”.
It occurred to me that I could get together an answer using an equal area projection map and a few lines of Python code; and indeed in 15 minutes I whipped-up this workflow:

  • Invert and import this B/W image of equal area projection (Peters) for the Northern hemisphere (land = white pixels).
Peters_projection,_black_north

Source of original image (full globe): Wikimedia Commons

  • Store the image as a Numpy array.
  • Calculate the total number of pixels in the image array (black + white).
  • Calculate the total number of white pixels (1s) by summing the entire array. Black pixels (0s) will not contribute.
  • Calculate percentage of white pixels.

The result I got is 40.44%. Here’s the code:

# import libraries
import numpy as np
from skimage import io
from matplotlib import pyplot as plt

# import image
url = 'https://mycartablog.com/wp-content/uploads/2018/09/peters_projection_black_north.png'
north_equal_area = io.imread(url, as_grey=True)

# check the image
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(1, 1, 1)
ax.set_xticks([])
ax.set_yticks([])
plt.imshow(north_equal_area, cmap = 'gray');

# Do the calculations
r, c = np.shape(north_equal_area)
sz =  r*c
s = np.sum(north_equal_area)
print(np.round(s/sz*100, decimals=2))
>>> 40.44

As suggested in a comment to my initial answer, I run the same Python script for the entire globe and got the expected 30% land coverage:

# import image 
url = 'https://mycartablog.com/wp-content/uploads/2018/09/peters_projection_black_full.png'
equal_area = io.imread(url1, as_grey=True)

# Do the calculations 
r1, c1= np.shape(equal_area)
sz1 =  r1*c1
s1 = np.sum(equal_area)
print(np.round(s1/sz1*100, decimals=2))
>>> 30.08

 

Computer vision in geoscience: recover seismic data from images – part 2

In part 1 of this short series I demonstrated how to detect the portion occupied by the seismic section in an image (Figure 1).

Figure 1

The result was a single binary image with the white object representing the pixels occupied by the seismic section (Figure 2).

Figure 2

You can download from GitHub all the tools for the automated workflow (including both part 1 and part 2, and some of the optional features outlined in the introduction) in the module mycarta.py, as well as an example Jupyter Notebook showing how to run it.

Next I want to use this binary object to derive a transformation function to rectify to a rectangle the seismic section in the input image.

The first step is to detect the contour of the object. Notice that because we used morphological operations it is not a perfect quadrilateral: it has rounded corners and some of the sides are bent, therefore the second step will be to approximate the contour with a polygon with enough tolerance to ensure it has 4 sides only(this took some trial and error but 25 turned out to be a good value for the parameter for a whole lot of test images I tried).

In reality, the two steps are performed together using the functions find_contours (there is only one to find, reallyand approximate_polygon from the skimage.measure module, as below:

contour = np.squeeze(find_contours(enhanced, 0))
coords = approximate_polygon(contour, tolerance=25)

The variable coords contains the coordinate for the corner points of the polygon (the first point is repeated last to close the polygon), which in Figure 3 I plotted superimposed to the input binary object.

Figure 3 – approximated polygon

A problem with the output of  approximate_polygon is that the points are not ordered; to solve it I adapted a function from a Stack Overflow answer to sort them based on the angle from their centroid:

def ordered(points):
  x = points[:,0]
  y = points[:,1]
  cx = np.mean(x)
  cy = np.mean(y)
  a = np.arctan2(y - cy, x - cx)
  order = a.ravel().argsort()
  x = x[order]
  y = y[order]
  return np.vstack([x,y])

I call the function as below to get the corners in the contour without the last one (repetition of the first point).

sortedCoords = ordered(coords[:-1]).T

I can then plot them using colors in a predefined order to convince myself the indeed are sorted:

plt.scatter(sortedCoords[:, 1], sortedCoords[:, 0], s=60, 
 color=['magenta', 'cyan', 'orange', 'green'])

Figure 4 – corners sorted in counter-clockwise order

The next bit of code may seem a bit complicated but it is not. With coordinates of the corners known, and their order as well, I can calculate the largest width and height of the input seismic section, and I use them to define the size of the registered output section, which is to be of rectangular shape:

w1 = np.sqrt(((sortedCoords[0, 1]-sortedCoords[3, 1])**2)
  +((sortedCoords[0, 0]-sortedCoords[3, 0])**2))
w2 = np.sqrt(((sortedCoords[1, 1]-sortedCoords[2, 1])**2)
  +((sortedCoords[1, 0]-sortedCoords[2, 0])**2))

h1 = np.sqrt(((sortedCoords[0, 1]-sortedCoords[1, 1])**2)
  +((sortedCoords[0, 0]-sortedCoords[1, 0])**2))
h2 = np.sqrt(((sortedCoords[3, 1]-sortedCoords[2, 1])**2)
  +((sortedCoords[3, 0]-sortedCoords[2, 0])**2))

w = max(int(w1), int(w2))
h = max(int(h1), int(h2))

and with those I define the coordinates of the output corners used to derive the transformation function:

dst = np.array([
  [0, 0],
  [h-1, 0],
  [h-1, w-1],
  [0, w-1]], dtype = 'float32')

Now I have everything I need to rectify the seismic section in the input image: it is warped using homologous points (the to sets of four corners) and a transformation function.

dst[:,[0,1]] = dst[:,[1,0]]
sortedCoords[:,[0,1]] = sortedCoords[:,[1,0]]
tform = skimage.transform.ProjectiveTransform()
tform.estimate(dst,sortedCoords)
warped =skimage.transform.warp(img, tform, output_shape=(h-1, w-1))

Notice that I had to swap the x and y coordinates to calculate the transformation function. The result is shown in Figure 5: et voilà!

Figure 5 – rectified seismic section

You can download from GitHub the code to try this yourself (both part 1 and part 2, and some of the optional features outlined in the introduction, like removing the rectangle with label inside the section) as well as an example Jupyter Notebook showing how to run it.

Computer vision in geoscience: recover seismic data from images – part 1

As anticipated in the introductory post of this short series I am going to demonstrate how to automatically detect where a seismic section is located in an image (be it a picture taken from your wall, or a screen capture from a research paper), rectify any distortions that might be present, and remove all sorts of annotations and trivia around and inside the section.

You can download from GitHub all the tools for the automated workflow (including both part 1 and part 2, and some of the optional features outlined in the introduction) in the module mycarta.py, as well as an example Jupyter Notebook showing how to run it.

In this part one I will be focusing on the image preparation and enhancement, and the automatic detection of the seismic section (all done using functions from numpy, scipy, and scikit-image)In order to do that, first I convert the input image  (Figure 1) containing the seismic section to grayscale and then enhance it by increasing the image contrast (Figure 2).

Figure 1 – input image

 

Figure 2 – grayscale image

All it takes to do that is three lines of code as follows:

gry = skimage.color.rgb2gray(img);
p2, p95 = numpy.percentile(gry, (2, 95))
rescale = exposure.rescale_intensity(gry, in_range=(p2, p95))

For a good visual intuition of what actually is happening during the contrast stretching, check my post sketch2model – sketch image enhancements: in there  I show intensity profiles taken across the same image before and after the process.

Finding the seismic section in this image involve four steps:

  1. converting the grayscale image to binary with a threshold (in this example a global threshold with the Otsu method)
  2. finding and retaining only the largest object in the binary image (heuristically assumed to be the seismic section)
  3. filling its holes
  4. applying morphological operations to remove minutiae (tick marks and labels)

Below I list the code, and show the results.

global_thresh = threshold_otsu(rescale)
binary_global = rescale < global_thresh

Figure 3 – binary image

# (i) label all white objects (the ones in the binary image).
# scipy.ndimage.label actually labels 0s (the background) as 0 and then
# every non-connected, nonzero object as 1, 2, ... n.
label_objects, nb_labels = scipy.ndimage.label(binary_global)

# (ii) calculate every labeled object's binary size (including that 
# of the background)
sizes = numpyp.bincount(label_objects.ravel())

# (3) set the size of the background to 0 so that if it happened to be 
# larger than the largest white object it would not matter
sizes[0] = 0

# (4) keep only the largest object
binary_objects = remove_small_objects(binary_global, max(sizes))

Figure 4 – isolated seismic section

# Remove holes (black regions inside white object)
binary_holes = scipy.ndimage.morphology.binary_fill_holes(binary_objects)

Figure 5 – holes removed

enhanced = opening(binary_holes, disk(7))

Figure 6 – removed residual tick marks and labels

That’s it!!!

You can download from GitHub all the tools for the automated workflow (including both part 1 and part 2, and some of the optional features outlined in the introduction) in the module mycarta.py, as well as an example Jupyter Notebook showing how to run it.

In the next post, we will use this polygonal binary object both as a basis to capture the actual coloured seismic section from the input image and to derive a transformation to rectify it to a rectangle.

What is acquisition footprint noise in seismic data?

Acquisition footprint is a noise field that appears on 3D seismic amplitude slices or horizons as an interwoven linear crosshatching parallel to the source line and receiver line directions. It is for the most part an expression of inadequate acquisition geometry, resulting in insufficient sampling of the seismic wave field (aliasing) and irregularities in the offset and azimuth distribution, particularly in the cross line direction.

Sometimes source-generated noise and incorrect processing (for example residual NMO due to erroneous velocity picks, incomplete migration, or other systematic errors) can accentuate the footprint.

This noise can interfere with the mapping of stratigraphic features and fault patterns, posing a challenge to seismic interpreters working in both exploration and development settings.

To demonstrate the relevance of the phenomenon I show below a gallery of examples from the literature of severe footprint in land data: an amplitude time slice (Figure 1a) and a vertical section (Figure 1b) from a Saudi Arabian case study, some seismic attributes (Figures 2, 3, 4, and 5), and also some modeled streamer data (Figure 6).

Bannagi combo

Figure 1. Amplitude time slice (top, time = 0.44 s) showing footprint in both inline and crossline direction, and amplitude section (bottom) highlighting the effect in the vertical direction. From Al-Bannagi et al. Copyrighted material.

Penobscop_sobel

Figure 2. Edge detection (Sobel filter) on the Penobscot 3D horizon (average time ~= 0.98 s) displaying N-S footprint. From Hall.

F3_shallow_sobel

Figure 3. Edge detection (Sobel filter) on a shallow horizon (average time ~= 0.44 s)  from the F3 Netherlands 3D survey displaying E-W footprint.

Davogustto and Marfurt

Figure 4. Similarity attribute (top , time = 0.6 s), and most positive curvature (bottom, time = 1.3 s), both showing footprint. From Davogustto and Marfurt. Copyrighted material.

Chopra-Larsen

Figure 5. Amplitude time slice (top, time = 1.32 s) the corresponding  coherence section  (bottom) both showing footprint. From Chopra and Larsen. Copyrighted material.

Long et al

Figure 6. Acquisition footprint in the form of low fold striation due to dip streamer acquisition. From Long et al. Copyrighted material.

In my next post I will review (with more examples form literature) some strategies available to either prevent or minimize the footprint with better acquisition parameters and modeling of the stack response; I will also discuss some ways the footprint can be attenuated after the acquisition of the data (with bin regularization/interpolation, dip-steered median filters, and kx ky filters, from simple low-pass to more sophisticated ones) when the above mentioned strategies are not available, due to time/cost constraint or because the interpreter is working with legacy data.

In subsequent posts I will illustrate a workflow to model synthetic acquisition footprint using Python, and how to automatically remove it in the Fourier domain with frequency filters, and then how to remove it from real data.

References

Al-Bannagi et al. 2005 – Acquisition footprint suppression via the truncated SVD technique: Case studies from Saudi Arabia: The Leading Edge, SEG, 24, 832– 834.

Chopra and Larsen,  2000 – Acquisition Footprint, Its Detection and Removal: CSEG Recorder, 25 (8).

Davogusto and Martfurt, 2011 – Footprint Suppression Applied to Legacy Seismic Data Volumes: 31st Annual GCSSEPM Foundation Bob F Perkins Research Conference 2011.

F3 Netherlands open access 3D:  info on SEG Wiki

Hall, 2014 –  Sobel filtering horizons (open source Jupyter Notebook on GitHub).

Long et al., 2004 – On the issue of strike or dip streamer shooting for 3D multi-streamer acquisition: Exploration Geophysics, 35(2), 105-110.

Penobscot open access 3D:  info on SEG Wiki

Computer vision in geoscience: recover seismic data from images, introduction

In a recent post titled Unweaving the rainbow, Matt Hall described our joint attempt (partly successful) to create a Python tool to enable recovery of digital data from any pseudo-colour scientific image (and a seismic section in particular, like the one in Figure 1), without any prior knowledge of the colormap.

Seismic picture on wall

Figure 1. Test image: a photo of a distorted seismic section on my wall.

Please check our GitHub repository for the code and slides and watch Matt’s talk (very insightful and very entertaining) from the 2017 Calgary Geoconvention below:

In the next two post, coming up shortly, I will describe in greater detail my contribution to the project, which focused on developing a computer vision pipeline to automatically detect  where the seismic section is located in the image, rectify any distortions that might be present, and remove all sorts of annotations and trivia around and inside the section. The full workflow is included below (with sections I-VI developed to date):

  • I – Image preparation, enhancement:
    1. Convert to gray scale
    2. Optional: smooth or blur to remove high frequency noise
    3. Enhance contrast
  • II – Find seismic section:
    1. Convert to binary with adaptive or other threshold method
    2. Find and retain only largest object in binary image
    3. Fill its holes
    4. Apply opening and dilation to remove minutiae (tick marks and labels)
  • III – Define rectification transformation
    1. Detect contour of largest object find in (2). This should be the seismic section.
    2. Approximate contour with polygon with enough tolerance to ensure it has 4 sides only
    3. Sort polygon corners using angle from centroid
    4. Define new rectangular image using length of largest long and largest short sides of initial contour
    5. Estimate and output transformation to warp polygon to rectangle
  • IV – Warp using transformation
  • V – Blanking annotations inside seismic section (if rectangular):
    1. Start with output of (4)
    2. Pre-process and apply canny filter
    3. Find contours in the canny filter smaller than input size
    4. Sort contours (by shape and angular relationships or diagonal lengths)
    5. Loop over contours:
      1. Approximate contour
      2. If approximation has 4 points AND the 4 semi-diagonals are of same length: fill contour and add to mask
  • VI – Use mask to remove text inside rectangle in the input and blank (NaN) the whole rectangle. 
  • VII – Optional: tools to remove arrows and circles/ellipses:
    1. For arrows – contours from (4) find ones with 7 sizes and low convexity (concave) or alternatively Harris corner and count 7 corners, or template matching
    2. For ellipses – template matching or regionprops
  • VIII – Optional FFT filters to remove timing lines and vertical lines

You can download from GitHub all the tools for the automated workflow (parts I-VI) in the module mycarta.py, as well as an example Jupyter Notebook showing how to run it.

The first post focuses on the image pre-processing and enhancement, and the detection of the seismic line (sections I and II, in green); the second one deals with the rectification of the seismic (sections IV to V, in blue). They are not meant as full tutorials, rather as a pictorial road map to (partial) success, but key Python code snippets will be included and discussed.

Mild or wild: robustness through morphological filtering

This guest post (first published here) is by Elwyn Galloway, author of Scibbatical on WordPress. It is the forth in our series of collaborative articles about sketch2model, a project from the 2015 Calgary Geoscience Hackathon organized by Agile Geoscience. Happy reading.

 

We’re highlighting a key issue that came up in our project, and describing what how we tackled it. Matteo’s post on Morphological Filtering does a great job of explaining what we implemented in sketch2model. I’ll build on his post to explain the why and how. In case you need a refresher on sketch2model, look back at sketch2model, Sketch Image Enhancement, Linking Edges with Geomorphological Filtering.

Morphological Filtering

As Matteo demonstrated by example, sketch2model’s ability to segment a sketch properly depends on the fidelity of a sketch.

fill_before_after_closing

An image of a whiteboard sketch (left) divides an area into three sections. Without morphological filtering, sketch2model segments the original image into two sections (identified as orange, purple) (centre). The algorithm correctly segments the area into three sections (orange, purple, green) when morphological filtering is applied (right).

To compensate for sketch imperfections, Matteo suggested morphological filtering on binarized images. Morphological filtering is a set of image modification tools which modify the shape of elements in an image. He suggested using the closing tool for our purposes. Have a look at Matteo’s Post for insight into this and other morphological filters.

One of the best aspects of this approach is that it is simple to apply. There is essentially one parameter to define: a structuring element. Since you’ve already read Matteo’s post, you recall his onion analogy explaining the morphological filtering processes of erosion and dilation – erosion is akin to removing an onion layer, dilation is adding a layer on. You’ll also recall that the size of the structuring element is the thickness of the layer added to, or removed from, the onion. Essentially, the parameterization of this process comes down to choosing the thickness of the onion layers.

Sketch2model uses dilation followed by erosion to fill gaps left between sketch lines (morphological dilation followed by erosion is closing). Matteo created this really great widget to illustrate closing using an interactive animation.

closing_demo1

Matteo’s animation was created using this interactive Jupyter notebook. Closing connects the lines of the sketch.

Some is Good, More is Better?

Matteo showed that closing fails if the structural element used is too small. So just make it really big, right? Well, there can be too much of a good thing. Compare what happens when you use an appropriately sized structuring element (mild) to the results from an excessively large structuring element (wild).

over-morph filtering.png

Comparing the results of mild and wild structuring elements: if the structuring element is too large, the filter compromises the quality of the reproduction.

Using a morphological filter with a structural element that is too small doesn’t fix the sketches, but using a structural element that is too large compromises the sketch too. We’re left to find an element that’s just right. Since one of the priorities for sketch2model was to robustly handle a variety of sketches with as little user input as possible — marker on whiteboard, pencil on paper, ink on napkin — we were motivated to find a way to do this without requiring the user to select the size of the structuring element.

Is there a universal solution? Consider this: a sketch captured in two images, each with their own resolution. In one image, the lines of the sketch appear to be approximately 16 pixels wide. The same lines appear to be 32 pixels wide in the other image. Since the size of the structuring element is defined in terms of pixels, it becomes apparent the ideal structuring element cannot be “one size fits all”.

res_vs_res

High-resolution (left) versus low-resolution (right) image of the same portion of a sketch. Closing the gap between the lines would require a different size structuring element for each image: about 5 pixels for high-resolution or 1 pixel for low-resolution.

Thinking Like a Human

Still motivated to avoid user parameterization for the structuring element, we explored ways to make the algorithm intelligent enough to select an appropriate structuring element on its own. Ultimately, we had to realize a few things before we came up with something that would work:

  1. When capturing an image of a sketch, users compose very similar images (compose in the photographic sense of the word): sketch is centered and nearly fills the captured image.
  2. The image of a sketch is not the same as a user’s perception of a sketch: a camera may record imperfections (gaps) in a sketch that a user does not perceive.
  3. The insignificance of camera resolution: a sketched feature in captured at two different resolutions would have two different lengths (in pixels), but identical lengths when defined as a percentage of image size.

With these insights, we deduced that the gaps we were trying to fill with morphological filtering would be those that escaped the notice of the sketch artist.

Recognizing the importance of accurate sketch reproduction, our solution applies the smallest structuring element possible that will still fill any unintentional gaps in a sketch. It does so in a way that is adaptable.

A discussion about the definition of “unintentional gap” allowed us to create a mandate for the closing portion of our algorithm. Sketch2model should fill gaps the user doesn’t notice. The detail below the limit of the user’s perception should not affect the output model. A quick “literature” (i.e. Google) search revealed that a person’s visual perception is affected by many factors beyond the eye’s optic limits. Without a simple formula to define a limit, we did what any hacker would do… define it empirically. Use a bunch of test images to tweak the structuring element of the closing filter to leave the perceptible gaps and fill in the imperceptible ones. In the sketch2model algorithm, the size of structuring element is defined as a fraction of the image size, so it was the fraction that we tuned empirically.

Producing Usable Results

Implicit in the implementation is sketch2model’s expectation that the user’s sketch, and their image of the sketch are crafted with some care. The expectations are reasonable: connect lines you’d like connected; get a clear image of your sketch. Like so much else in life, better input gives better results.

paper_pen_wow2_beforeafter.jpg

Input (left) and result (right) of sketch2model.

To produce an adaptable algorithm requiring as little user input as possible, the sketch2model team had to mix a little image processing wizardry with some non-technical insight.

Have you tried it? You can find it at sketch2model.com. Also on GitHub.


Previous posts in the sketch2model series: sketch2model, Sketch Image Enhancement, Linking Edges with Geomorphological Filtering.