Perceptual rainbow palette – the method

With this post I would like to introduce my new, perceptually balanced rainbow color palette. I used the palette for the first time in How to assess a colourmap, an essay I wrote for 52 Things You Should Know About Geophysics, edited by Matt Hall and Evan Bianco of Agile Geoscience.

In my essay I started with the analysis of the spectrum color palette, the default  in some seismic interpretation softwares, using my Lightness L* profile plot and Great Pyramid of Giza test surface (see this post for background on the tests and to download the Matlab code). The profile and the pyramid are shown in the top left image and top right image in Figure 1, from the essay.

spectrum vs cubeYF

Figure 1

In the plot the value of L* varies with the color of each sample in the spectrum, and the line is colored accordingly. This erratic profile highlights several issues with spectrum: firstly, the change in lightness is not monotonic. For example it increases from black (L*=0) to magenta [M] then drops from magenta to blue [B], then increases again and so on. This is troublesome if spectrum is used to map elevation because it will interfere with the correct perception of relief, particularly if shading is added. Additionally, the curve gradient changes many times, indicating a nonuniform perceptual distance between samples. There are also plateaus of nearly flat L*, creating bands of constant color (a small one at the blue, and a large one at the green [G]).

The Great Pyramid has monotonically increasing elevation (in feet – easier to code) so there should be no discontinuities in the surface if the color palette is perceptual. However, clearly using the spectrum we have introduced many artificial discontinuities that are not present in the data. For the bottom row in FIgure 1 I used my new color palette, which has a nice, monotonic, compressive Lightness profile (bottom left). Using this palette the pyramid surface (bottom right) is smoothly colored, without any perceptual artifact.

This is how I created the palette: I started with RGB triplets for magenta, blue, cyan, green, and yellow (no red), which I converted to L*a*b* triplets using Colorspace transformations, a Matlab function available on the Matlab File Exchange. I modified the new L* values by fitting them to an approximately cube law L* function (this is consistent with Stevens’ power law of perception), and adjusted a* and b* values using Lab charts like the one in Figure 2 (from CIELab Color Space by Gernot Hoffmann, Department of Mechanical Engineering, University of Emden)  to get 5 colors moving up the L* axis along an imaginary spiral (I actually used tracing paper). Then I interpolated to 256 samples using the same ~cube law, and finally reconverted to RGB [1].

L*50_RGBval

Figure 2

There was quite a bit of trial and error involved, but I am very happy with the results. In the animations below I compare the spectrum and the new palette, which I call cubeYF, as seen in CIELab color space. I generated these animations with the method described in this post, using the 3D color inspector plugin in ImageJ:

I also added Matlab’s default Jet rainbow – a reminder that defaults may be a necessity, but in many instances not the ideal choice:

OK, the new palette looks promising, insofar as modelling is concerned. But how would it fare using some real data? To answer this question I used a residual gravity map from my unpublished thesis in Geology at the University of Rome. I introduced this map and discussed the geological context and objectives of the geophysical study in a previous post, so please refer to that if you are curious about it. In this post I will go straight to the comparison of the color palettes; if you are unfamiliar with gravity data, try to imagine negative residuals as elevation below sea level, and positive residuals as elevation above seal level – you won’t miss out on anything.

In Figures 3 to 6 I colored the data using the above three color palettes, and grayscale as benchmark. I generated these figures using Matlab code I shared in my post Visualization tips for geoscientists: Matlab, and I presented three of them (grayscale, Spectrum, and cubeYF) at the 2012 convention of the Canadian Society of Exploration Geophysicists in Calgary (the extended abstract, which I co-authored with Steve Lynch of 3rd Science, is available here).

In Figure 3, the benchmark for the following figures, I use grayscale to represent the data, assigning increasing intensity from most negative gravity residuals in black to most positive residuals in white (as labeled next to the colorbar). Then, I used terrain slope to create shading: the higher the slope, the darker the shading that is assigned, which results in a pseudo-3D display that is very effective (please refer to Visualization tips for geoscientists: Surfer, for an explanation of the method, and Visualization tips for geoscientists: Matlab for code).

Figure 3 - Grayscale benchmark

Figure 3 – Grayscale benchmark

In Figure 4 I color the pseudo-3D surface with the cubeYF rainbow. Using this color palette instead of grayscale allows viewers to appreciate smaller changes, more quickly assess differences, or conversely identify areas of similar anomaly, while at the same time preserving the peudo-3D effect. Now compare Figure 4 with Figure 5, where we use the spectrum to color the surface: this palette introduces several artefacts (sharp edges and bands of constant hue) which confuse the display and interfere with the perception of pseudo-relief, all but eliminating the effect.  For Figure 6 I used Matlab’s default Jet color palette, which is better that the spectrum, and yet the relief effect is somewhat lost (due mainly to a sharp yellow edge and cyan band).

campi cube YF

Figure 4 – cube YF rainbow

campi spectrum

Figure 5 – Industry spectrum

campi jet

Figure 6 – Matlab Jet

It looks like both spectrum and jet are poor choices when used for color representation of a surface, with the new color palette a far superior alternative. In the CSEG convention paper mentioned above (available here) Steve and I went further by showing that the spectrum not only has these perceptual artifacts and edges, but it is also very confusing for viewers with deficient color vision, a condition that occurs in about 8% of Caucasian males. We did that using computer software [2] to simulate how viewers with two types of deficient color vision, Deuteranopia and Tritanopia, would see the two colored surfaces, and we compare the results. In other words, we are now able to see the images as they would see them. Please refer to the paper for a full discussion on these simulation.

In here, I show in Figures  7 to 9 the Deuteranope simulations for cubeYF, spectrum, and jet, respectively. In all three simulations the hue discrimination has decreased, but while the spectrum and jet are now even more confusing, the cubeYF has preserved the relief effect.

Deuteranope Simulation of campi cube YF

Deuteranope Simulation of cube YF

Deuteranope Simulation of campi spectrum

Deuteranope Simulation of Industry spectrum

Deuteranope Simulation of campi jet

Deuteranope Simulation of Matlab Jet

That’s it for today. In my next post, to be published very shortly, you will get the palette, and a lot more.

References

A more perceptual color palette for structure maps, CSEG/CSPG 2012 convention, Calgary

How to assess a colourmap, in 52 Things You Should Know About Geophysics

Notes

[1] An alternative to the method I used would be to start directly in CIELab color space, and use a some kind of spiral *L lightness profile programmatically.  For example:

– Using 3D helical curves from: http://www.mathworks.com/matlabcentral/fileexchange/25177-3d-curves

– Using Archimedes spiral

– Expanding on code by Steve Eddins at Mathworks (A path through L*a*b* color space) in this article , one could create a spiral cube lightness with something like:

%% this creates best-fit pure power law function 
%  Inspired by wikipedia - http://en.wikipedia.org/wiki/Lightness
l2=linspace(1,power(100,0.42),256); 
L2=(power(l2,1/0.42))'; 

%% this makes cielab real cube function spiral 
radius = 50; 
theta = linspace(0.6*pi, 2*pi, 256).'; 
a = radius * sin(theta); b = radius * cos(theta); 
Lab1 = [L2, a, b]; RGB_realcube=colorspace('RGB<-Lab',(Lab1));

[2] The simulations are created using ImageJ, an open source image manipulation program, and the Vischeck plug-in. I later discovered Dichromacy, anther ImageJ plug-in for these simulations, which has the advantage of being an open source plugin. They can also be performed on the fly (no upload needed) using the online tool Color Oracle.

Related posts

The rainbow is dead…long live the rainbow! – The rainbow is dead…long live the rainbow! – Perceptual palettes, part 2: a rainbow puzzle

ROYGBIV or YOGRVIB?

If you are interested in the topic of color palettes for scientific data, and the rainbow in particular, I would say you ought to read this 2007 IEEE visualization paper by Borland and Taylor: Rainbow Color Map (Still) Considered Harmful. It clearly and elegantly illustrates why the rainbow palette should be avoided when displaying scientific data. I like Figure 1 in the paper in particular. The illustration shows how it is easy to order perceptually a set of 4 paint chips of different gray intensity, but not at all easy to order 4 paint chips colored red, green, yellow, and blue. The author’s argument is that the rainbow colors are certainly ordered, from shorter to longer wavelengths, but they are not perceptually ordered. In this post I wanted to extend the chips example to all 7 colors in the rainbow and try to demonstrate the point in a quantitative way.

Here below is a 256-sample rainbow palette I created interpolating between the RGB values for the seven colors of the rainbow red, orange, yellow, green, blue, indigo, and violet (ROY G BIV):

On this palette I see a number of perceptual artifacts, the most notable ones being a sharp edge at the yellow and a flat zone at the green. The existence of these edges I tried to explain quantitatively in the first post of this series.

Now, to go back to the experiment, from the original RGB values for the non interpolated colors I created the 7 color chips below . Question: can you order them based on their perceived intensity?

I think if you have full color vision (more on the topic of rainbow and impaired color vision in the next section of this post) eventually you will be able to order them as I did.If not, try now below. In this new image I converted the color chips to gray chips using the values obtained in Matlab with this formula:

INT = (0.2989 * RGB(:,1) + 0.5870* RGB(:,2) + 0.1140 * RGB(:,3))';

Give it a try, then hover with your mouse over the image to read the intensity values.

roygbiv_intensityroygbiv_intensity_values

Not surprisingly, the values are not in any particular order. This reinforces the notion that although the rainbow colors are ordered by increasing wavelength (or decreasing in this case) , they are not perceptually ordered. (See this comment to my previous post). Below I rearranged the gray chips by increasing intensity.

And now I reconverted from gray to RGB colors and adjusted the distance between each pair of chips so that it is proportional to the intensity difference between the chips in the pair (I actually had to artificially change the value for green and orange so they would not overlap). That was an epiphany for me. And the name is funny too, BIV R GOY, or YOG R VIB…

I said that it was an epiphany because I realize the implications of trying to create a palette by interpolating through these colors with those distances. So I did it, and I am showing it below in the top color palette. We jumped out of the frying pan, into the fire! We went from perceptual artifacts that are inherent to the rainbow (reproduced in reverse order from blue to red to facilitate comparison as the bottom palette) to interpolation artifacts in the intensity ordered rainbow. Hopeless!

ROYGBIV puzzle

As if what I have shown in the previous section wasn’t scary enough, I took 7 squares and colored them using the same RGB values for Red, Orange, Yellow, Green, Blue, Indigo, and Violet. Then I used the Dichromacy plug-in in ImageJ to simulate how these colors would be seen by a viewer with Deuteranopia (the more common form of color vision deficiency). I then shuffled the squares in random order on a square canvas, and numbered them 1-7 in clockwise order.

Puzzle: can you pair the squares numbered 1 through 7 with the colors R though V? I will give away the obvious one, which is the yellow:

1=Y
2=?
3=?
4=?
5=?
6=?
7=?

Cannot do it? For the solution just hover over the image with your mouse. If you like the animation and would like to use it on your blog, twitter, Facebook, get the GIF file version here. Please be kind enough to link it back to this post.

roygbiv_random_deuteranoperoygbiv_random

Conclusion

When I tried myself I could not solve the puzzle, and that finally convinced me that trying to fix the rainbow was a hopeless cause. Even if we could, it would still confuse a good number of people (about 8% of male have one form or the other of color vision deficiency). From the next post on I will show what I got when I tried to create a better, more perceptual rainbow from scratch.

Related posts (MyCarta)

The rainbow is dead…long live the rainbow! – the full series

What is a colour space? reblogged from Colour Chat

Color Use Guidelines for Mapping and Visualization

A rainbow for everyone

Is Indigo really a colour of the rainbow?

Why is the hue circle circular at all?

A good divergent color palette for Matlab

Related topics (external)

Color in scientific visualization

The dangers of default disdain

Color tools

How to avoid equidistant HSV colors

Non-uniform gradient creator

Colormap tool

Color Oracle – color vision deficiency simulation – stand alone (Window, Mac and Linux)

Dichromacy –  color vision deficiency simulation – open source plugin for ImageJ

Vischeck – color vision deficiency simulation – plugin for ImageJ and Photoshop (Windows and Linux)

For teachers

NASA’s teaching resources for grades 6-9: What’s the Frequency, Roy G. Biv?

A good divergent color palette for Matlab

INTRODUCTION

Before starting my series on perceptual color palettes I thought it was worth mentioning an excellent function I found some time ago on the Matlab File Exchange. The function is called Light and Bartlein Color Maps. It was a Matlab Pick of the week, and it can be used to create four color palettes discussed in the EOS paper by Light and Bartlein. Each of these palettes is suited for a specific task, and the authors claim they are non confusing for viewers with color vision deficiencies.

In the remainder of this post I will showcase one of the palettes, called orange-white-purple, as it is good divergent scheme [1]. With the code below I am going to load the World Topography Matlab demo data, create  the palette and use it to display the data.

%% load World Topography Matlab demo
load topo;

%% create Light Bartlein orange-white-purple diverging scheme
LB=flipud(lbmap(256,'BrownBlue')); % flip it so blue is for negative(ocean)
                                   % and green for positive (land)

%% plot map
fig2 = figure;
imagesc(flipud(topo));
axis equal
axis tight
axis off
set(fig2,'Position',[720 400 980 580]);
title(' Non-symmetric divergent orange-white-purple palette','Color',...
    'k','FontSize',12,'FontWeight','demi');
colormap(LB);
colorbar;

And here is the result below. I like this color scheme better than many othera for divergent data. One only issue in the figure, although not inherently due to the palette itself [2], is that the centre of the palette is not at the zero. This is a problem since the zero is such an important element in ratio data, in this case representing sea level.

MAKING THE PALETTE SYMMETRIC AROUND THE ZERO

The problem fortunately can be easily fixed by clipping the data limit to a symmetric range. In Matlab this has to be done programmatically, and rather than going about it with trial and error I like to do it automatically with the code below:

Continue reading