Spectral lightness rainbow colormap

Spectral lightness rainbow

Quick post to share my replica of Ethan Montag ‘s Spectral lightness colormap from this paper. My version has a linear Lightness profile (Figure 1) that increases monotonically from 0 (black) to 100 (white) while Hue cycles from 180 to 360 degrees and then wraps around and continues from 0 to 270.

Figure 1

Figure 2

Matlab code

To run this code you will need Colorspace, a free function from Matlab File Exchange, for the color space transformations.

```%% generate Chroma, Lightness, Hue components
h2=linspace(0,270,60*2.56);
h1=linspace(180,360,103);
h=horzcat(h1,h2);
c=ones(1,256)*25;
l=linspace(0,100,256);```
```%% merge together
lch = vertcat(l,c,h)';```
```%% convert to RGB
rgb = colorspace('LCH->rgb',lch);```
```%% Plot color-coded lightness profile
figure;
h=colormapline(1:1:256,lch(:,1),[],rgb);
set(h,'linewidth',2.8);
title('Montag Spectral L* lightness plot ','Color','k','FontSize',12,'FontWeight','demi');```
```%%  Pyramid test data
PY=zeros(241,241);
for i = 1:241
temp=(0:1:i-1);
PY(i,1:i)=temp(:);
end
test=PY.';
test=test-1;
test(test==-1)=0;
test1=test([2:1:end,1],:);
PY1=PY+test1;
PY2=fliplr(PY1);
PY3= flipud(PY1);
PY4=fliplr(PY3);
GIZA=[PY1,PY2;PY3,PY4].*2;
x=linspace(1,756,size(GIZA,1));
y=x;
[X,Y]=meshgrid(x,y);
clear i test test1 PY PY1 PY2 PY3 PY4 temp;

%% display Pyramid surface
fig1=figure;
surf(X,Y,GIZA,GIZA,'FaceColor','interp','EdgeColor','none');
view(-35,70);
colormap(rgb);
axis off;
grid off;
colorbar;
% set(fig1,'Position',[720 400 950 708]);
% set(fig1,'OuterPosition',[716 396 958 790]);
title('Montag Spectral L*','Color','k','FontSize',12,'FontWeight','demi');```

Aknowledgements

The coloured lightness profiles were made using the Colormapline submission from the Matlab File Exchange.

New rainbow colormap: sawthoot-shaped lightness profile

Why another rainbow

In the comment section of my last post Steve Eddins from Mathworks reported that some Matlab users prefer Jet to Parula, the new default perceptual colormap in Matlab, because within certain ranges Jet affords a greater contrast, intended as the rate of change in lightness.

My counter-argument to that is that yes, some data may benefit from being displayed using Jet (in terms of contrast, and hence the power to resolve smaller anomalies) because of those areas of very steep rate of change of lightness, like the blue to cyan and yellow to red portions (see Figure 1). But the price one has to pay is that there is an area of very low gradient (a greenish band between cyan and yellow) where there’s nearly no contrast, which would obfuscate subtle anomalies in the data. On top of that there’s no control of where each of those areas are located, so a lot of effort has to go into trying to fit those regions of artificially high contrast to the portion of data of interest.

Figure 1

Because of their high lightness, the yellow and cyan artificial edges also cause problems. In his latest blog post Steve uses a test pattern do demonstrate how they make the interpretation of trivial structures more difficult. He also explains why they occurr in some locations and not others in the first place. I wonder if the resulting regions of high lightness juxtaposed to regions of low lightness could be chromatic Mach bands.

Additionally, as Steve points out, the low-contrast juxtaposition of dark red and dark blue bands creates the visual illusion of depth (Chromostereopsis) in other positions of the test pattern, creating further confusion.

But I have some good news for the hardcore fans of Jet, and rainbow colormaps in general. I created a rainbow with a sawtooth-shaped lightness profile made up of 5 ramps, each with the same  rate of change in lightness and total lightness change of 60, and alternatively negative and positive signs. This is shown in Figure 2, and replaces the lightness profile of a basic 6-color rainbow (magenta-blue-cyan-green-yellow-red) shown in Figure 3.

Figure 2

Figure 3

With this rainbow users have the ability to apply greater contrast to their data to boost small anomalies, but in a more controlled way. The colormap is available with my File Exchange function, Perceptually improved colormaps. Below is the Matlab code I used to generate the new rainbow.

Matlab code

To run this code you will need Colorspace, a free function from Matlab File Exchange, for the color space transformations.

```%% basic 6-colour rainbow
% create RGB components
m = [1, 0, 1]; % magenta
b = [0, 0, 1]; % blue
c = [0, 1, 1]; % cyan
g = [0, 1, 0]; % green
y = [1, 1, 0]; % yellow
r = [1, 0, 0]; % red
% concatenate components
rgb = vertcat(m,b,c,g,y,r);
% interpolate to 256 colours
rainbow=interp1(linspace(1, 256, 6),rgb,[1:1:256]);```
```%% calculate Lab components
% convert from RGB to Lab colour space
% requires this function: Colorspace transforamtions
% www.mathworks.com/matlabcentral/fileexchange/28790-colorspace-transformations
lab = colorspace('RGB->Lab',rainbow);
```
```%% replace random lightness profile with sawtooth-shaped profile
% contrast (magnitude of lightness change) between
% each pair of adjeacent colors set to 60
L1 = [90, 30, 90, 30, 90, 30];
% interpolate to 256 lightness values
L1int = interp1(linspace(1, 256, 6),L1,[1:1:256])';
% replace
lab1 = horzcat(L1int,lab(:,2),lab(:,3));```
```%% new rainbow
% convert back from Lab to RGB colour space
swtth = colorspace('RGB<-Lab',lab1);
```

Test results

Figures 4, 5, and 6 show the three colormaps used with my Pyramid test surface (notice in Figure 5 that the green band artifact with this rainbow is even more pronounced than with jet). I welcome feedback.

Figure 4

Figure 5

Figure 6

Aknowledgements

The coloured lightness profiles were made using the Colormapline submission from the Matlab File Exchange.

New Matlab isoluminant colormap for azimuth data

I recently added to my Matlab File Exchange function, Perceptually improved colormaps, a colormap for periodic data like azimuth or phase. I am going to briefly showcase it using data from my degree thesis in geology, which I used before, for example in Visualization tips for geoscientists – Matlab. Figure 1, from that post, shows residual gravity anomalies in milligals.

Figure 1

Often we’re interested in characterizing these anomalies by calculating the direction of maximum dip at each point on the surface, and for that direction display the azimuth, or dip azimuth.  I’ve done this for the surface of residual anomalies from Figure 1 and displayed the azimuth in Figure 2. Azimuth from 0 to 360 degrees are color-coded using Jet, Matlab’s standard colormap (until recently). Typically I do not trust azimuth values when the dip is close to zero because it is often contaminated by noise so I would use shading to de-saturate the colors where dip has the lowest values, but for ease of discussion I haven’t done so in this case.

Figure 2. Azimuth values color-coded with Jet.

There are two problems with Figure 2. First, the well-known problems with the jet colormap. For example, blue is too dark and blue areas appear as bands of constant colour. Yellow is much lighter than any other colour so we see artificial yellow edges that are not really present in the data. But there is an additional issue in Figure 2 because azimuths close in value to 0 and 360 degrees are colored with blue and red, respectively, instead of a single color as they should, causing an additional artificial edge.

In Figure 3 I recolored the map using a colormap that replicates those used in many geophysical software tools to display azimuth or phase data. This is better because it wraps around at 360 degrees but the perceptual issues are unresolved: in this case red, yellow and blue all appear as sharp perceptual edges.

Figure 3. Azimuth values color-coded with generic azimuth colormap.

Figure 4. Azimuth values color-coded with isoluminant azimuth colormap.

In Figure 4 I used my new colormap, called isoAZ (for isoluminant azimuth). This colormap is much better because not only does it wraps around at 360 degrees, but also lightness is held constant for all colors, which eliminates the perceptual anomalies. All the artificial yellow, red, and blue edges are gone, only real edges are left. This can be more easily appreciated in the figure below: if you hover with your mouse over it you are able to switch back and forth between Figure 3 and Figure 4.

From an interpretation point of view, azimuths 180 degrees apart are of opposing colours, which is ideal for dip azimuth data because it allows us to easily recognize folds where dips of opposite direction are juxtaposed at an edge. One example is the sharp edge in the northwest quadrant of Figure 4, where magenta is juxtaposed to green. If you look at Figure 1 you see that there’s a relative high in this area (the edge in Figure 4) with dips of opposite direction on either side (East and West, or 0 and 360 degrees).

The colormap was created in the Lightness-Chroma-Hue color space, a polar transform of the Lab color space, where lightness is the vertical axis and at each value of lightness, chroma is the radial coordinate and hue the polar angle. One limitation of this approach is that due to theirregular  shape of the color gamut section at each lightness value, we can never exceed  chroma values  of about 38-40 (at lightness = 65 in Matlab; in Python, with extensive trial and error, I have not been able to go past 36 using the Scikit-image Color module), which make the resulting colors pale, pastely.

it creates For those that want to experiment with it further, I used just a few lines of code similar to the ones below:

```radius = 38; % chroma
theta = linspace(0, 2*pi, 256)'; % hue
L = (ones(1, 256)*65)'; % lightness
Lab = [L, a, b];
RGB=colorspace('RGB<-Lab',Lab(end:-1:1,:));
```

This code is a modification from an example by Steve Eddins on a post on his Matlab Central blog. In Steve’s example the colormap cycles through the hues as lightness increases monotonically (which by the way is an excellent way to generate a perceptual rainbow). In this case lightness is kept constant and hue cycles through the entire 360 degrees and wraps around. Also, instead of using the Image Processing Toolbox, I used  Colorspace, a free function from Matlab File Exchange, for the color space transformations.

For data like fracture orientation where azimuths 180 degrees apart are equivalent it is better to stack two of these isoluminant colormaps in a row. In this way we place opposing colors 90 degrees apart, whereas color 180 degrees apart are the same. You can do it using Matlab commands repmat or vertcat, as below:

```radius = 38; % chroma
theta = linspace(0, 2*pi, 128)'; % hue
L = (ones(1, 128)*65)'; % lightness
Lab = [L, a, b];
rgb=colorspace('RGB<-Lab',Lab(end:-1:1,:));
RGB=vertcat(rgb,rgb);
```

Parula: a new Matlab colormap

Steve Eddins of the Matwork just published a post announcing a new Matlab colormap to replace Jet. It is called Parula (more to come on his blog about this intriguing name).

First impression: Parula looks good.

And while I haven’t had time to take it into Python to run a full perceptual test and into ImageJ for a colour blindness test, as a preliminary test I did convert it to grayscale with an online picture converting tool that uses the lightness information to perform the conversion (instad of just desaturating the colors) and the result shows monotonic changes in gray.

Looks promising… Full test to come.

Perceptual rainbow palette – the method

With this post I would like to introduce my new, perceptually balanced rainbow color palette. I used the palette for the first time in How to assess a colourmap, an essay I wrote for 52 Things You Should Know About Geophysics, edited by Matt Hall and Evan Bianco of Agile Geoscience.

In my essay I started with the analysis of the spectrum color palette, the default  in some seismic interpretation softwares, using my Lightness L* profile plot and Great Pyramid of Giza test surface (see this post for background on the tests and to download the Matlab code). The profile and the pyramid are shown in the top left image and top right image in Figure 1, from the essay.

Figure 1

In the plot the value of L* varies with the color of each sample in the spectrum, and the line is colored accordingly. This erratic profile highlights several issues with spectrum: firstly, the change in lightness is not monotonic. For example it increases from black (L*=0) to magenta [M] then drops from magenta to blue [B], then increases again and so on. This is troublesome if spectrum is used to map elevation because it will interfere with the correct perception of relief, particularly if shading is added. Additionally, the curve gradient changes many times, indicating a nonuniform perceptual distance between samples. There are also plateaus of nearly flat L*, creating bands of constant color (a small one at the blue, and a large one at the green [G]).

The Great Pyramid has monotonically increasing elevation (in feet – easier to code) so there should be no discontinuities in the surface if the color palette is perceptual. However, clearly using the spectrum we have introduced many artificial discontinuities that are not present in the data. For the bottom row in FIgure 1 I used my new color palette, which has a nice, monotonic, compressive Lightness profile (bottom left). Using this palette the pyramid surface (bottom right) is smoothly colored, without any perceptual artifact.

This is how I created the palette: I started with RGB triplets for magenta, blue, cyan, green, and yellow (no red), which I converted to L*a*b* triplets using Colorspace transformations, a Matlab function available on the Matlab File Exchange. I modified the new L* values by fitting them to an approximately cube law L* function (this is consistent with Stevens’ power law of perception), and adjusted a* and b* values using Lab charts like the one in Figure 2 (from CIELab Color Space by Gernot Hoffmann, Department of Mechanical Engineering, University of Emden)  to get 5 colors moving up the L* axis along an imaginary spiral (I actually used tracing paper). Then I interpolated to 256 samples using the same ~cube law, and finally reconverted to RGB [1].

Figure 2

There was quite a bit of trial and error involved, but I am very happy with the results. In the animations below I compare the spectrum and the new palette, which I call cubeYF, as seen in CIELab color space. I generated these animations with the method described in this post, using the 3D color inspector plugin in ImageJ:

I also added Matlab’s default Jet rainbow – a reminder that defaults may be a necessity, but in many instances not the ideal choice:

OK, the new palette looks promising, insofar as modelling is concerned. But how would it fare using some real data? To answer this question I used a residual gravity map from my unpublished thesis in Geology at the University of Rome. I introduced this map and discussed the geological context and objectives of the geophysical study in a previous post, so please refer to that if you are curious about it. In this post I will go straight to the comparison of the color palettes; if you are unfamiliar with gravity data, try to imagine negative residuals as elevation below sea level, and positive residuals as elevation above seal level – you won’t miss out on anything.

In Figures 3 to 6 I colored the data using the above three color palettes, and grayscale as benchmark. I generated these figures using Matlab code I shared in my post Visualization tips for geoscientists: Matlab, and I presented three of them (grayscale, Spectrum, and cubeYF) at the 2012 convention of the Canadian Society of Exploration Geophysicists in Calgary (the extended abstract, which I co-authored with Steve Lynch of 3rd Science, is available here).

In Figure 3, the benchmark for the following figures, I use grayscale to represent the data, assigning increasing intensity from most negative gravity residuals in black to most positive residuals in white (as labeled next to the colorbar). Then, I used terrain slope to create shading: the higher the slope, the darker the shading that is assigned, which results in a pseudo-3D display that is very effective (please refer to Visualization tips for geoscientists: Surfer, for an explanation of the method, and Visualization tips for geoscientists: Matlab for code).

Figure 3 – Grayscale benchmark

In Figure 4 I color the pseudo-3D surface with the cubeYF rainbow. Using this color palette instead of grayscale allows viewers to appreciate smaller changes, more quickly assess differences, or conversely identify areas of similar anomaly, while at the same time preserving the peudo-3D effect. Now compare Figure 4 with Figure 5, where we use the spectrum to color the surface: this palette introduces several artefacts (sharp edges and bands of constant hue) which confuse the display and interfere with the perception of pseudo-relief, all but eliminating the effect.  For Figure 6 I used Matlab’s default Jet color palette, which is better that the spectrum, and yet the relief effect is somewhat lost (due mainly to a sharp yellow edge and cyan band).

Figure 4 – cube YF rainbow

Figure 5 – Industry spectrum

Figure 6 – Matlab Jet

It looks like both spectrum and jet are poor choices when used for color representation of a surface, with the new color palette a far superior alternative. In the CSEG convention paper mentioned above (available here) Steve and I went further by showing that the spectrum not only has these perceptual artifacts and edges, but it is also very confusing for viewers with deficient color vision, a condition that occurs in about 8% of Caucasian males. We did that using computer software [2] to simulate how viewers with two types of deficient color vision, Deuteranopia and Tritanopia, would see the two colored surfaces, and we compare the results. In other words, we are now able to see the images as they would see them. Please refer to the paper for a full discussion on these simulation.

In here, I show in Figures  7 to 9 the Deuteranope simulations for cubeYF, spectrum, and jet, respectively. In all three simulations the hue discrimination has decreased, but while the spectrum and jet are now even more confusing, the cubeYF has preserved the relief effect.

Deuteranope Simulation of cube YF

Deuteranope Simulation of Industry spectrum

Deuteranope Simulation of Matlab Jet

That’s it for today. In my next post, to be published very shortly, you will get the palette, and a lot more.

References

A more perceptual color palette for structure maps, CSEG/CSPG 2012 convention, Calgary

How to assess a colourmap, in 52 Things You Should Know About Geophysics

Notes

[1] An alternative to the method I used would be to start directly in CIELab color space, and use a some kind of spiral *L lightness profile programmatically.  For example:

– Using 3D helical curves from: http://www.mathworks.com/matlabcentral/fileexchange/25177-3d-curves

– Using Archimedes spiral

– Expanding on code by Steve Eddins at Mathworks (A path through L*a*b* color space) in this article , one could create a spiral cube lightness with something like:

```%% this creates best-fit pure power law function
%  Inspired by wikipedia - http://en.wikipedia.org/wiki/Lightness
l2=linspace(1,power(100,0.42),256);
L2=(power(l2,1/0.42))';

%% this makes cielab real cube function spiral
theta = linspace(0.6*pi, 2*pi, 256).';
Lab1 = [L2, a, b]; RGB_realcube=colorspace('RGB<-Lab',(Lab1));```

[2] The simulations are created using ImageJ, an open source image manipulation program, and the Vischeck plug-in. I later discovered Dichromacy, anther ImageJ plug-in for these simulations, which has the advantage of being an open source plugin. They can also be performed on the fly (no upload needed) using the online tool Color Oracle.

The rainbow is dead…long live the rainbow! – Perceptual palettes, part 1

Introduction

This is the first  post in a series on the rainbow and similar color palettes. My goal is to demonstrate it is not a good idea to use these palettes to display scientific data, and then answer these two questions: (1) is there anything we can do to “fix” the rainbow, and (2) if not, can we design a new one from scratch.

In a previous post I showed a pseudo-3D rendering of my left hand x-ray using intensity (which is a measure of bone thickness) as the elevation. I mapped the rendering to both grayscale and rainbow color palettes, and here I reproduced the two images side by side:

I used this example to argue (briefly) that the rainbow obscures some details and confuses images by introducing artifacts. Notice that in this case it clearly reduces the effectiveness of the pseudo-3D rendering in general. It also introduces inversions in the perception of elevation. The thick part in the head of the radius bone, indicated by the arrow, looks like a depression, whereas it is clearly (and correctly) a high in the grayscale version.

A good divergent color palette for Matlab

INTRODUCTION

Before starting my series on perceptual color palettes I thought it was worth mentioning an excellent function I found some time ago on the Matlab File Exchange. The function is called Light and Bartlein Color Maps. It was a Matlab Pick of the week, and it can be used to create four color palettes discussed in the EOS paper by Light and Bartlein. Each of these palettes is suited for a specific task, and the authors claim they are non confusing for viewers with color vision deficiencies.

In the remainder of this post I will showcase one of the palettes, called orange-white-purple, as it is good divergent scheme [1]. With the code below I am going to load the World Topography Matlab demo data, create  the palette and use it to display the data.

```%% load World Topography Matlab demo

%% create Light Bartlein orange-white-purple diverging scheme
LB=flipud(lbmap(256,'BrownBlue')); % flip it so blue is for negative(ocean)
% and green for positive (land)

%% plot map
fig2 = figure;
imagesc(flipud(topo));
axis equal
axis tight
axis off
set(fig2,'Position',[720 400 980 580]);
title(' Non-symmetric divergent orange-white-purple palette','Color',...
'k','FontSize',12,'FontWeight','demi');
colormap(LB);
colorbar;```

And here is the result below. I like this color scheme better than many othera for divergent data. One only issue in the figure, although not inherently due to the palette itself [2], is that the centre of the palette is not at the zero. This is a problem since the zero is such an important element in ratio data, in this case representing sea level.

MAKING THE PALETTE SYMMETRIC AROUND THE ZERO

The problem fortunately can be easily fixed by clipping the data limit to a symmetric range. In Matlab this has to be done programmatically, and rather than going about it with trial and error I like to do it automatically with the code below: